Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 317: 115364, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35617865

ABSTRACT

Microplastics (MP) are ubiquitous contaminants and their presence in sewage sludge has recently received attention as they may enter agro-ecosystems if sludge is used as organic soil amendment. Indeed, plastic particles (<5 mm) can be transported from wastewater and sewage sludge to the soil environment either directly within the plastic matrix or indirectly as adsorbed substances. In this paper, articles from 18 countries reporting the MP quantity and their characteristics in sewage sludge from wastewater treatment plants were reviewed and the MP concentration size and type were compared. The data show that MP abundance in sewage sludge ranged globally from 7.91 to 495 × 103 particles kg-1 with highest abundance of fiber shape and MP size of less than 500 µm. In this review, we summarized and discussed the methods most frequently used for extraction and characterization of MP in sewage sludge including organic matter removal, MP extraction; physical and morphological MP characterization and its chemical characterization for polymer identification. We also described the major factors potentially controlling the fate of MP during disposal strategies with particular focus on composting. We show that physical and microbiological factors are important for MP degradation during composting and suggest two remediation practices: (i) inoculation of the initial sludge with microbial plastic decomposers to remove MP from contaminated sewage sludge, and (ii) development of high temperature composting processes.


Subject(s)
Composting , Microplastics , Ecosystem , Plastics , Sewage/chemistry , Soil
2.
Chemosphere ; 298: 134293, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307387

ABSTRACT

Solar drying and liming are commonly used for sludge treatment, but little is known about their efficiency on antibiotics and Polycyclic Aromatic Hydrocarbons (PAHs) removal. This study aimed to investigate the removal of antibiotics and PAHs during solar drying of Limed Sludge (LS) and Non-Limed Sludge (NLS). Thus, organic matter fractionation and 3D fluorescence were used to assess the accessibility and the complexity of organic matter. 2 experiments have been conducted using LS and NLS for 45 days of drying in a pilot scale tunnel. Physicochemical results indicated significant decrease of water content (90%) for both sludge samples within 15 days of drying. For both treatments, the removal of total organic carbon and total nitrogen was low and similar for both treatments. Through this study, it has been confirmed that liming and drying contributed to a strong modification of the organic matter quality with an increase of its accessibility. On the other hand, drying alone increased the less accessible compartments, while the presence of lime affected the interconnexion between the organic matter pools. 3D fluorescence confirmed the obtained results and indicated that LS leads to obtaining more simple molecules in the most accessible compartments, while NLS leads to obtaining more complex molecules in the less accessible compartments. In addition, solar radiations and leaching may contribute to the significant removal (p < 0.01) of roxithromycin, benzo(a)anthracene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and benzo(g, h, i) perylene in the presence of lime. Furthermore, the evolution of organic matter pools in terms of accessibility and complexity may drive the bioavailability of these pollutants, leading to their significant removal.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Sewage , Anti-Bacterial Agents , Benzo(a)pyrene , Chemical Fractionation , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage/chemistry
3.
Front Microbiol ; 12: 814553, 2021.
Article in English | MEDLINE | ID: mdl-35265049

ABSTRACT

Olive mill wastewater sludge (OMWS) is the main by-product of the olive industry. OMWS is usually dumped in landfills without prior treatment and may cause several eco-environmental hazards due to its high toxicity, which is mainly attributed to polyphenols and lipids. OMWS is rich in valuable biocompounds, which makes it highly desirable for valorization by composting. However, there is a need to understand how microbial communities evolve during OMWS composting with respect to physicochemical changes and the dynamics of pollutant degradation. In this study, we addressed the relationship between microbial community, physicochemical variations and pollutants degradation during the co-composting of OMWS and green wastes using metagenomic- and culture-dependent approaches. The results showed that in raw OMWS, Pichia was the most represented genus with almost 53% of the total identified fungal population. Moreover, the bacteria that dominated were Zymobacter palmae (20%) and Pseudomonas sp. (19%). The addition of green waste to OMWS improved the actinobacterial diversity of the mixture and enhanced the degradation of lipids (81.3%) and polyphenols (84.54%). Correlation analysis revealed that Actinobacteria and fungi (Candida sp., Galactomyces sp., and Pichia manshurica) were the microorganisms that had the greatest influence on the composting process. Overall, these findings provide for the first time some novel insights into the microbial dynamics during OMWS composting and may contribute to the development of tailored inoculum for process optimization.

4.
Environ Sci Pollut Res Int ; 28(11): 14080-14091, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33201505

ABSTRACT

The present study is aimed at assessing the effectiveness of solar drying process in terms of helminth egg reduction in sewage sludge (SS) generated from an activated sludge wastewater treatment plant (WWTP) in Marrakesh city (Morocco). It is also engaged to highlight a synergic effect of liming (1% CaO) and solar drying on helminth egg reduction. The solar drying process was conducted for 45 days, in summer under a semi-arid climate in a pilot scale polycarbonate-based tunnel (2 m3). Before undergoing solar drying process, data showed an important load of helminth eggs including Ascaris sp., Schistosoma spp., Capillaria spp., Trichuris spp., Ankylostome spp., Toxocara spp., and Taenia spp. in limed sludge (LS) and non-limed sludge (NLS) (15.2 and 17.9 eggs/g, respectively). Ascaris eggs were the most abundant (11.2 and 13.5 eggs/g in LS and NLS, respectively). By the end of the solar drying process, a considerable removal of the total helminth eggs was recorded in LS and NLS (92.8% and 91.6%, respectively). A complete removal of Schistosoma spp., Capillaria spp., Trichuris spp., Toxocara spp. and Taenia spp. was noted in LS and NLS. In the case of Ankylostome spp., data showed a total removal in LS and 81% in NLS; however, the final load is in agreement with the standards (0.4 egg/g). As for Ascaris spp., neither liming nor solar drying process allowed a complete removal (91% and 90% in NLS and LS, respectively) and the final load (1.1 egg/g) does not fulfill the WHO requirements for an agricultural use. Principal component analysis (PCA) demonstrated a negative correlation between dry matter (DM) content (hence temperature) and helminth egg concentration. No significant synergic effect of liming and solar drying process was showed by statistical analysis. This is substantiating that temperature is the key parameter involved in helminth egg removal while undergoing solar drying of SS.


Subject(s)
Helminths , Sewage , Animals , Ascaris , Morocco , Toxocara
5.
J Environ Manage ; 275: 111249, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32836169

ABSTRACT

Lagooning sludge (LS), which is used as soil amendment in Morocco, may contain microplastics (MPs). The aim of this study was to examine the effect of dewatering and co-composting of LS with green waste (GW) on the MPs' evolution. In this context the present study proposes fast-preliminary steps to detect plastics in lagooning sewage sludge before the extraction and identification process. We used pyrolysis GC/MS spectrometry to investigate the presence of chemical compounds possibly derived from plastics, and fluorescence staining by Nile Red to detect fluorescent particles suspected as plastics. Thereafter, we quantified the MPs particles after density fractionation and investigated their nature by Raman spectroscopy. RESULTS: indicated the presence of an average of 40.5 ± 11.9 × 103 MPs particles/kg (dry matter) and 36 ± 9.7 × 103 MPs particles/kg (dry matter) in fresh sludge and dewatered sludge respectively. Sludge dewatering in drying beds resulted a loss of small MPs (<500 µm). In co-composts, the quantity of MPs varied with the proportion of sewage sludge. The distribution of MPs types differentiated by colour and types (polypropylene, polyethylene, polyamide and polyester) evolved differently. Conventional co-composting did not have any effect on MPs quantity, indicating that they are not biodegradable under these temperature conditions, but it influenced their particle size. The risks of these pollutants after repeated field application and the possibility of their reduction through others co-composting procedures and techniques would be further investigated.


Subject(s)
Composting , Sewage , Microplastics , Morocco , Plastics , Pyrolysis , Spectrum Analysis, Raman , Staining and Labeling
6.
J Environ Manage ; 255: 109821, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31778868

ABSTRACT

The present study investigates the ability of Aspergillus flavus (A. flavus) for organic and nitrogen matter removal from landfill leachate. Experiments were carried out with different types of leachate, (Young (YL), Intermediate (IL) and Old (OL)) used at different concentrations of the leachate up to 100%. The organic fraction of landfill leachate was measured by biological oxygen demand (BOD5) and chemical oxygen demand (COD) then it was qualitatively assessed using three dimensional excitation emission matrix (3D-EEM). The nitrogen fraction was measured by ammonium (NH4+) and nitrate (NO3-). The experiments revealed that, BOD5, COD and NH4+ removal rates after 4 weeks of treatment in flasks were within the ranges of 47.90-81.63%, 12.91-48.50% and 70.84-98.81%, respectively and that affected the reduction of the phytotoxicity in a positive way. A. flavus with 25% concentration of YL recorded the best results in reducing COD and BOD5 with maximum removal rates of around 48.50% and 81.63%, respectively. However, the highest NH4+ removal rate of 98.81% was found in 25% concentration of OL. The 3D-EEM results showed that the intensities of the fluorescent peaks for the three treated leachates have decreased sharply after treatment. This was confirmed by the increase of the organic matter complexity index for different treatments (from 0.55 to 0.87). Therefore, A. flavus may be potentially useful in the treatment of landfill leachate at a concentration of less than or equal to 50% as it was able to remove organic and nitrogen compounds, particularly in the treatment of YL leachate at a concentration of 25%.


Subject(s)
Water Pollutants, Chemical , Aspergillus flavus , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Nitrogen , Spectrometry, Fluorescence
7.
Environ Sci Pollut Res Int ; 26(1): 570-576, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30411287

ABSTRACT

The prevalence and the identification of the helminth eggs load of raw sewage sludge was assessed of three different wastewater treatment systems. The results showed a variety of parasite species with following average concentrations; five taxa belonging to three classes nematodes, cestodes and trematodes were inventoried. The class of nematodes is the most diverse with 5 taxa. It is represented by the eggs of Ascaris sp., Capillaria sp., Trichuris sp., Toxocara sp., and Ankylostome sp., then comes the cestodes class, this is represented by the eggs of Tænia sp. The trematode class is represented by Schistosoma sp. The lagooning station of Chichaoua shows the highest load 7 species with Ascaris 21 eggs/g; Capillaria sp., 11 eggs/g; Trichuris sp., 6 eggs/g; Toxocara sp., 2 eggs/g and Ankylostome sp., 1 egg/g; Taenia sp., 2eggs/g; and Schistosoma sp., 1 egg/g. Infiltration-percolation sludge show the presence of 4 species of helminths eggs in sludge from anaerobic settling with different rates: 15 eggs/g for Ascaris sp., 15 eggs/g for Trichuris sp., 13 eggs/g for Capillaria sp., and 8 eggs/g for Taenia sp. However, in sand filter pool, the sludge helminth eggs load was decreased by 47% of Ascaris sp., 85% of Capillaria sp., and 75% of Taenia sp., Nevertheless, an increase of Trichuris eggs load was noted in the second sludge by 17%. Five helminth eggs was detected in primary sludge coming from decantation pools in activated sludge plant in Marrakech, that is Ascaris sp., with a load of 16 eggs/g; Capillaria sp., with 3 eggs/g, Trichuris eggs with 2 eggs/g; Taenia sp., with 4 eggs/g; and Schistosoma sp., with 2 eggs/g. The abatement load of Ascaris sp. with 81% and Schistosoma and Taenia sp., with 100% was noted in biological sludge. Nevertheless, an increase load of Capillaria and Trichuris eggs 81% and 75% respectively was observed in this sludge coming from biological pools. The distribution of parasitic helminth eggs is linked to the differences in demographic and socio-economic status, seasonal variation, physico-chemical characteristic of helminth eggs, and the purification wastewater system performance.


Subject(s)
Sewage/parasitology , Waste Disposal, Fluid , Animals , Ascaris , Cestoda , Climate , Helminths , Nematoda , Toxocara , Trichuris , Wastewater
8.
Ecotoxicol Environ Saf ; 166: 482-487, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30312947

ABSTRACT

In this investigation, petroleum sludge landfilling was carried out in order to assess the biodegradation degree and the final product quality. The microbial analysis showed a good microorganism proliferation which reinforces the biodegradation process. The total mesophilic and thermophilic microflora evaluated symmetrically as they increased at the intermediate stage and decreased at the final. The C/N and NH4+/NO3-ratios decreased while the polymerization degree increased at the end of the landfilling process. The total polyphenols and total petroleum C6 to C22hydrocarbons were removed by 71.6% and 73% respectively, and that affected the reduction of the phytotoxicity in a positive way. All these changes are in agreement with the efficiency of the biotransformation process and showed that petroleum sludge and filling reduced the toxic organic compounds and led to a stable final product.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Petroleum/microbiology , Soil Pollutants/analysis , Waste Disposal Facilities , Petroleum/analysis , Petroleum/toxicity , Soil Microbiology
9.
Chemosphere ; 211: 893-902, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30119021

ABSTRACT

In this work a fast analytical method for the determination of macrolides, tetracyclines and fluoroquinolones in a compost originating from a mixture of sewage sludge, palm waste and grass was developed by ultra-high performance liquid chromatography coupled to mass spectrometry (U-HPLC/MS). Antibiotics were extracted from compost by using the accelerated solvent extraction (ASE). The chromatographic separation was carried out on a T3 Cortecs C18 column using a mobile phase gradient mixture of water acidified with 1% of formic acid and acetonitrile. Recoveries of 24-30%, 53-93%, 33-57%, 69-135% and 100-171% were obtained for roxithromycin (ROX), chlortetracycline (CTC), oxytetracycline (OTC), enrofloxacin (ENR) and ciprofloxacin (CIP), respectively. As the most part of antibiotics showed significant matrix effect (ME), the method was validated using the standard addition method (SAM) to correct the observed ME. Instrumental variation, of LC/MS system, showed that 93.75% of the relative standard deviation (RSD %) are below 15%, although the organic load of extracts. This analytical method was applied to assess the fate of antibiotics during composting. Two composting experiments were conducted separately after spiking sludge at 2 different concentrations levels. The resulting elimination rates were of 52-76, 69-100, 100 and 24-50% for ROX, CTC, OTC and CIP, respectively. These results suggest that composting process contributes to the removal of residuals concentrations of macrolides and tetracyclines while the fluoroquinolones persist in the final compost product.


Subject(s)
Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/analysis
10.
J Hazard Mater ; 359: 465-481, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30071464

ABSTRACT

Wastewater treatment plant effluent, sludge and manure are the main sources of contamination by antibiotics in the whole environment compartments (soil, sediment, surface and underground water). One of the major consequences of the antibiotics discharge into the environment could be the prevalence of a bacterial resistance to antibiotic. In this review, four groups of antibiotics (Tetracyclines, Fluoroquinolones, Macrolides and Sulfonamides) were focused for the background on their wide spread occurrence in sludge and manure and for their effects on several target and non-target species. The antibiotics concentrations range between 1 and 136,000 µg kg-1 of dry matter in sludge and manure, representing a potential risk for the human health and the environment. Composting of sludge or manure is a well-known and used organic matter stabilization technology, which could be effective in reducing the antibiotics levels as well as the antibiotic resistance genes. During sludge or manure composting, the antibiotics removals range between 17-100%. The deduced calculated half-lives range between 1-105 days for most of the studied antibiotics. Nevertheless, these removals are often based on the measurement of concentration without considering the matter removal (lack of matter balance) and very few studies are emphasized on the removal mechanisms (biotic/abiotic, bound residues formation) and the potential presence of more or less hazardous transformation products. The results from the few studies on the fate of the antibiotic resistance genes during sludge or manure composting are still inconsistent showing either decrease or increase of their concentration in the final product. Whether for antibiotic or antibiotic resistance genes, additional researches are needed, gathering chemical, microbiological and toxicological data to better understand the implied removal mechanisms (chemical, physical and biological), the interactions between both components and the environmental matrices (organic, inorganic bearing phases) and how composting process could be optimized to reduce the discharge of antibiotics and antibiotic resistance genes into the environment.


Subject(s)
Anti-Bacterial Agents/analysis , Manure/analysis , Sewage/analysis , Veterinary Drugs/analysis , Animals , Biodegradation, Environmental , Composting , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans
11.
Environ Sci Pollut Res Int ; 25(11): 10988-10996, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29404950

ABSTRACT

In this work, we assessed the drying and composting effectiveness of helminth eggs removal from sewage sludge of a lagoon wastewater treatment plant located in Chichaoua city. The composting was run after mixing sludge with green waste in different proportions: M1 (½ sludge + ½ green waste), M2 ([Formula: see text] sludge + [Formula: see text] green waste), and M3 ([Formula: see text] sludge + [Formula: see text] green waste) for 105 days. The analysis of the dewatered sewage sludge showed a load of 8-24 helminth eggs/g of fresh matter identified as Ascaris spp. eggs (5-19 eggs/g) followed by Toxocara spp. (0.2 to 2.4 eggs/g); Hookworm spp. and Capillaria spp. (0.4-1 egg/g); Trichuris spp., Taenia spp., and Shistosoma spp. (< 1 egg/g) in the untreated sludge. After 105 days of treatment by composting, we noted a total reduction of helminth eggs in the order of 97.5, 97.83, and 98.37% for mixtures M1, M2, and M3, respectively. The Ascaris spp. eggs were reduced by 98% for M1 and M3 treatments and by 97% for M2 Treatment. Toxocara spp., Hookworm spp., Trichuris spp., Capillaria spp., and Shistosoma spp. eggs were totally eliminated (100% decrease) and the Taenia spp. was absent from the first stage of composting. These results confirm the effectiveness of both dehydrating and composting processes on the removal of helminth eggs.


Subject(s)
Ascaris/chemistry , Composting/methods , Helminths/chemistry , Toxocara/chemistry , Trichuris/chemistry , Animals , Sewage
12.
Environ Sci Pollut Res Int ; 23(16): 16857-64, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27197656

ABSTRACT

The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.


Subject(s)
Biotransformation , Hydrocarbons/metabolism , Industrial Waste , Phoeniceae , Waste Disposal, Fluid/methods , Agriculture , Alkanes/chemistry , Alkenes , Humic Substances/analysis , Sewage/chemistry , Soil , Wastewater/chemistry , Wastewater/microbiology
13.
Waste Manag ; 50: 194-200, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26868843

ABSTRACT

Considering the necessity to constantly monitor the safety of use of sewage sludge, we have focused on evaluating the toxicity of raw sludge and sludge treated by co-composting with date palm waste using an in vitro assessment of cytotoxicity based on Artemia salina larvae as a simple new sensitive and reliable routine test. The efficiency of co-composting in decreasing sludge toxicity was evaluated in terms of cytotoxicity abatement reaching 100% by the second month of composting for mixture A (1/3 sludge+2/3 date palm waste) and the third month for mixture B (1/2 sludge+1/2 date palm waste). Cytotoxicity abatement was confirmed by the increase of germination index, which reached over 100% with positive correlation for lettuce (R(2)=0.81 and 0.86) and for turnip (R(2)=0.87 and 0.74) for mixtures A and B respectively. A strong correlation between the proposed cytotoxicity test and the evolution of regulatory physical-chemical approaches was found, (R(2)=0.88 and 0.89) for NH4(+)/NO3(-) and (R(2)=0.80 and 0.88) for C/N respectively for mixture A and B. These findings allow the inexpensive bioassay reported to be used as a highly sensitive test to determine the cytotoxicity and maturity of composts.


Subject(s)
Artemia/drug effects , Cytotoxins/toxicity , Lignin/toxicity , Sewage/analysis , Animals , Morocco , Waste Disposal, Fluid
14.
Environ Technol ; 37(1): 129-35, 2016.
Article in English | MEDLINE | ID: mdl-26102058

ABSTRACT

The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.


Subject(s)
Actinobacteria/metabolism , Enterobacteriaceae/metabolism , Phoeniceae/metabolism , Sewage/chemistry , Waste Disposal, Fluid/methods , Cities , Morocco , Sewage/microbiology
15.
J Environ Health Sci Eng ; 12(1): 132, 2014.
Article in English | MEDLINE | ID: mdl-25419463

ABSTRACT

Indigenous microflora community changes during six months of co-composting of activated sewage sludge and date palm waste was investigated using two different culture approaches. In order to evaluate the co-composting process evolution for mixture A and B, growth standard media (GSM) and Compost Time Extract Agar (CTEA) are used. Enumeration for indigenous flora abundance on GSM medium shows that the colony-forming unit (CFU) total number was 100 fold higher than on CTEA. The thermophilic phase is determined at 30 day for both mixtures A and B. Nevertheless this stage is limited only at 22 and 30 days, respectively for mixture A and B on CTEA medium, which indicate a similar temperature profile at versus time of co-composting. The results suggest that the GSM medium approach can be used for monitoring the microbial cultivable presence. However, CTEA act as a natural selective medium to enumerate the indigenous functional microflora. This technique was successful in assessing the process evolution and determination of a real succession thermophilic and maturation co-composting stages.

16.
Environ Technol ; 35(21-24): 3052-9, 2014.
Article in English | MEDLINE | ID: mdl-25244133

ABSTRACT

Olive mill wastewater (OMWW) is a by-product of the olive oil extraction industry. Its dumping creates severe environmental problems in the Mediterranean countries. The phytoxicity of OMWW is due to the phenolic substances and is evaluated through a genotoxicity method. An aerobic treatment of OMWW was conducted during 45 days. Different concentrations of raw and treated OMWW were tested using the Vicia faba micronuclei test. Results showed that raw OMWW induced significant micronuclei formation at 10% of OMWW dilution. At 20% of dilution, no mitosis was recorded. The 45 days aerobic treatment OMWW showed an important decrease in the genotoxicity and also in the toxicity that was observed at 10% and 20% OMWW dilution. This could be correlated with the biodegradation of 76% of the total phenols. Indeed, qualitative analysis by high performance liquid chromatography shows the disappearance of the majority of phenolic compounds after 45 days of treatment. This study was completed by an agricultural test with V. faba plant. Data showed significant growth yield of 36.3% and 29.9% after being irrigated with 5 and 10 t/ha, respectively. These results supported the positive role of aerobic treatment on OMWW and their capacity to ameliorate the agronomic potential of these effluents.


Subject(s)
Food-Processing Industry , Industrial Waste , Plant Oils , Waste Disposal, Fluid/methods , Aerobiosis , Bacteria/drug effects , Bacteria/isolation & purification , Bacterial Load , Colony Count, Microbial , Fungi/drug effects , Fungi/isolation & purification , Germination/drug effects , Micronucleus Tests , Olea , Olive Oil , Phenols/analysis , Phenols/toxicity , Seeds/drug effects , Seeds/growth & development , Vicia faba/drug effects , Vicia faba/growth & development , Wastewater , Water Pollutants/analysis , Water Pollutants/toxicity
17.
Environ Technol ; 34(21-24): 2965-75, 2013.
Article in English | MEDLINE | ID: mdl-24617055

ABSTRACT

Liquid and solid olive oil mill waste was treated by com posting in a mixture with the organic part of municipal solid waste and rock phosphate. The transformations that occurred during the process were evaluated by physical, chemical and spectroscopic analyses. After five months of com posting, the final compost presented a C/N ratio under 20, an NH4+/NO3(-)] ratio under 1 and a pH around neutral. A high level of organic matter decomposition paralleled a notable abatement of phenols and lipids. The results show the effective dissolution of mineral elements during composting. This transformation was followed by Fourier transform infrared which showed a decrease in the absorption bands of aliphatic bonds (2925 and 2855 cm(-1)) and carbonyls of carboxylic origin (1740 cm (-1)). In addition to the increase in humic substances and the improvement of germination indices, the parameters studied confirm the stability and the maturity of the composts. The absence of phytotoxicity opens the way to agricultural spreading.


Subject(s)
Organic Chemicals/metabolism , Plant Oils/chemistry , Refuse Disposal/methods , Soil Microbiology , Soil/chemistry , Waste Disposal, Fluid/methods , Agriculture , Biodegradation, Environmental , Olive Oil , Organic Chemicals/chemistry , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...