Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140075

ABSTRACT

The urge to implement innovative approaches that align with eco-friendly practices and hold promise for enhancing oral health while promoting environmental sustainability has been increasing. This current work aims to develop a sustainable treatment for oral traumatic ulcers using licorice-based hydrogels (LHGs) containing hydroxyethyl cellulose (HEC) as the green gelling agent. Licorice root aqueous extract was phytochemically profiled using UPLC-ESI-MS/MS. Forty-three compounds were detected, with Glycyrrhizic acid being the major component of the extract (34.85 ± 2.77%). By implementing a Quality by Design (QbD) approach, the study investigates the effects of different licorice extract and HEC concentrations on key variables such as pH and viscosity of the prepared formulations, ulcer and wound healing scores, and tissue growth factors via a Full Factorial Experimental Design. The LHGs exhibited desirable consistency, spreadability, and clarity. Statistical analysis, employing an ANOVA test, revealed the high significance of the constructed models with the licorice concentration being the key independent factor affecting all dependent outputs. The pH as well as the viscosity of the prepared LHGs were positively influenced by licorice extract concentration, with higher concentrations leading to increased alkalinity and viscosity. Rheological behavior analysis revealed a pseudoplastic flow with demonstrated thixotropy which is advantageous for application and prolongation of residence time. The wound healing process was assessed through ulcer size, traumatic ulcer healing score (UHS), collagen-1 expression (COL-1), growth factors (EGF, VEGF), pro-inflammatory markers (TNF-α), wound healing score (WHS). LHGs prepared using higher levels of both factors, 30% dried licorice root extract and 4% HEC, demonstrated enhanced wound healing, elevated growth factor expression of 66.67% and 23.24%, respectively, and 88% reduced inflammation compared to the control group, indicating their potential in expediting oral ulcer recovery. Overall, these findings highlight the promising role of green licorice-based hydrogels in promoting sustainable oral mucosal healing.

2.
Pharmaceutics ; 15(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896273

ABSTRACT

Lipid and/or polymer-based drug conjugates can potentially minimize side effects by increasing drug accumulation at target sites and thus augment patient compliance. Formulation factors can present a potent influence on the characteristics of the obtained systems. The selection of an appropriate solvent with satisfactory rheological properties, miscibility, and biocompatibility is essential to optimize drug release. This work presents a computational study of the effect of the basic formulation factors on the characteristics of the obtained in situ-forming particulates (IFPs) encapsulating a model drug using a 21.31 full factorial experimental design. The emulsion method was employed for the preparation of lipid and/or polymer-based IFPs. The IFP release profiles and parameters were computed. Additionally, a desirability study was carried out to choose the optimum formulation for further morphological examination, rheological study, and PBPK physiological modeling. Results revealed that the type of particulate forming agent (lipid/polymer) and the incorporation of structure additives like Brij 52 and Eudragit RL can effectively augment the release profile as well as the burst of the drug. The optimized formulation exhibited a pseudoplastic rheological behavior and yielded uniformly spherical-shaped dense particulates with a PS of 573.92 ± 23.5 nm upon injection. Physiological modeling simulation revealed the pioneer pharmacokinetic properties of the optimized formulation compared to the observed data. These results assure the importance of controlling the formulation factors during drug development, the potentiality of the optimized IFPs for the intramuscular delivery of piroxicam, and the reliability of PBPK physiological modeling in predicting the biological performance of new formulations with effective cost management.

3.
Drug Deliv ; 29(1): 3340-3357, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36377493

ABSTRACT

The anti-hyperglycemic sodium glucose co-transporter 2 inhibitor Canagliflozin (CFZ) represents a recent antihyperglycemic modality, yet it suffers from low oral bioavailability. The current work aims to formulate CFZ-loaded transdermal nanostructured liquid crystal gel matrix (NLCG) to improve its therapeutic efficiency. Pre-formulation study included the construction of pseudoternary phase diagrams to explore the effect of two conventional amphiphiles against amphiphilic tri-block copolymer in the formulation of NLCG. The influence of different co-solvents was also investigated with the use of monooleine as the oil. Physical characterization, morphological examination and skin permeation were performed for the optimized formulations. The formula of choice was further investigated for skin irritation and chemical stability. Pharmacodynamic evaluation of the successful formula was conducted on hyperglycemic as well as normoglycemic mice. In addition, oral glucose tolerance test was conducted. Results revealed the supremacy of Poloxamer for stabilizing and maximizing liquid crystal gel (LCG) area percentage that reached up to 12.6%. CFZ-NLCG2 isotropic formula showed the highest permeation parameters; maximum flux value of 7460 µg/cm2 h and Q24 of 5327 µg/cm2. Pharmacodynamic evaluation revealed the superiority of the antihyperglycemic activity of CFZ-NLCG2 in fasting mice and its equivalence in the oral glucose tolerance test (OGTT) compared to the oral one. The obtained results confirmed the success of CFZ-NLCG2 in the transdermal delivery of CFZ in therapeutically effective concentration compared to the oral route, bypassing first pass effect; in addition, eliminates the possible gastrointestinal side effects related to the inhibition of intestinal sodium glucose co-transporter (SGLT) and maximizes its selectivity to the desired inhibition of renal SGLT.


Subject(s)
Liquid Crystals , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Rats , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Rats, Wistar , Administration, Cutaneous , Skin , Gels/pharmacology , Symporters/pharmacology , Glucose/pharmacology , Sodium/pharmacology , Drug Delivery Systems/methods
4.
Gels ; 8(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36135305

ABSTRACT

The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. Ofloxacin-loaded hybridized nanocellulose/lipid nanogels (OFX-HNCNs) were prepared and evaluated adopting a computational method based on regression analysis. The optimized nanogels (OFX-HNCN7) showed a spherical outline with an encapsulation efficiency (EE), particle size (PS) and zeta potential (ZP) values of 97.53 ± 1.56%, 200.2 ± 6.74 nm and -26.4 ± 0.50 mV, respectively, with an extended drug release profile. DSC examination of OFX-HNCN7 proved the amorphization of the encapsulated drug into the prepared OFX-HNCNs. Microbiological studies showed the prolonged inhibition of bacterial growth by OFX-HNCN7 compared to the free drug. The cytocompatibility of OFX-HNCN7 was proved by Sulforhodamine B assay. Tissue repair was evaluated using the epidermal scratch assay based on cell migration in human skin fibroblast cell line, and the results depicted that cell treated with OFX-HNCN7 showed a faster and more efficient healing compared to the control. In overall, the obtained findings emphasize the benefits of using the eco-friendly bioactive nanocellulose, hybridized with lipid, to prepare a nanocarrier for skin repair.

5.
Int J Nanomedicine ; 17: 2753-2776, 2022.
Article in English | MEDLINE | ID: mdl-35782018

ABSTRACT

Background: The low entrapment efficiency of the hydrophilic drugs such as brimonidine tartrate (BRT) in liposomes represents a challenge that requires interventions. Gelatinized core liposomes (GCLs) were fabricated to increase the drug entrapment, corneal penetration, and physical stability of the investigated molecule. Research Design and Methods: GCLs encapsulating BRT were prepared and optimized utilizing D-optimal design (DOD). The effect of plasticizer incorporation on the physicochemical characteristics and on the in vivo performance was studied. The optimized formulations were investigated for pH, rheological properties, morphological characteristics, in vitro release profiles, biological performance, safety profile. The effects of storage and gamma sterilization were also investigated. Results: The results revealed the great success of the prepared formulations to achieve high entrapment efficiency reaching 98% after a maturation period of 10 days. The addition of glycerol as plasticizer significantly minimized the particle size and shortened the maturation period to 7 days. The selected formulations were stable for 3 months after gamma sterilization. The formulations showed significant lowering of intra-ocular pressure (IOP) in glaucomatous rabbits with sustainment of the pharmacological effect for 24 hours compared to drug solution. Conclusions: Enhanced in vitro and in vivo profiles of brimonidine tartrate loaded gelatinized-core-liposomes were obtained.


Subject(s)
Glaucoma , Liposomes , Animals , Brimonidine Tartrate , Intraocular Pressure , Liposomes/chemistry , Plasticizers , Rabbits
6.
Drug Deliv ; 29(1): 2117-2129, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35838555

ABSTRACT

The eye is an invulnerable organ with intrinsic anatomical and physiological barriers, hindering the development of a pioneer ocular formulation. The aim of this work was to develop an efficient ocular delivery system that can augment the ocular bioavailability of the antifungal drug, terconazole. Mesoporous silica microparticles, Syloid® 244 FP were utilized as the carrier system for terconazole. Preliminary studies were carried out using different drug:Syloid® weight ratios. The optimum weight ratio was mixed with various concentrations (30 and 60%w/w) of poly (lactic-co-glycolic acid) (PLGA), ester or acid-capped and with different monomers-ratio (50:50 and 75:25) using the nano-spray dryer. Results revealed the superiority of drug:Syloid® weight ratio of 1:2 in terms of yield percentage (Y%), SPAN and drug content percentage (DC%). Furthermore, incorporation of PLGA with lower glycolic acid monomer-ratio significantly increased Y%. In contrast, increasing the glycolic acid monomer-ratio resulted in higher DC% and release efficiency percentage (RE%). Additionally, doubling PLGA concentration significantly reduced Y%, DC%, drug loading percentage (DL%) and RE%. Applying desirability function in terms of increasing DC%, DL% besides RE% and decreasing SPAN, the selected formulation was chosen for DSC, XRD and SEM investigations. Results confirmed the successful loading of amorphized terconazole on PLGA-modified Syloid® microparticles. Moreover, pharmacokinetic studies for the chosen formulation on male Albino rabbits' eyes revealed a 2, 6.7 and 25.3-fold increase in mean residence time, Cmax and AUC0-24-values, respectively, compared to the drug suspension. PLGA-modified Syloid® microparticles represent a potential option to augment the bioavailability of ocular drugs.


Subject(s)
Lactic Acid , Polyglycolic Acid , Animals , Drug Carriers , Male , Microspheres , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Triazoles
7.
Drug Deliv ; 29(1): 1423-1436, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35532141

ABSTRACT

Intra-articular (IA) injection is grasping much interest due to the poor drug bioavailability at the targeted site of action which minimizes the effect of the orally administered moiety. Based on the integral role of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of Rheumatoid Arthritis (RA), much effort is exerted to develop novel localized drug delivery systems to increase their bioavailability and minimize their side effects. Artificial intelligence (AI) is acquiring an increasing role in the design of experiments being an effective tool for saving both time and resources. Hence, the aim of this work was to develop, characterize and optimize targeted in-situ forming nano particles (ISNs) for IA delivery of piroxicam using Design® Expert as an AI-based application where a 33 full factorial experimental design was adopted. Morphological investigation, injectability, rheological studies, Fourier Transform Infrared Radiation (FTIR) as well as biological, histopathological, and biochemical examinations were performed to evaluate the optimized-ISNs. The optimized formulation, exhibiting a nano-sized particle size with a dense core, showed significant improvement in the histopathological findings compared to both the oral solution and the placebo. Additionally, the once-a-week IA administration of the optimized-ISNs proved a significant reduction in the protein expression of both STAT-3 and RANKL and the levels of anti-CCP and MCP-1 by almost 54 and 73%, respectively, coupled with a marked decline in the content of IL-17, MMP-3, NF-κB and TNF-α as compared to the positive control. In conclusion, the use of ISNs for intra-articular injection has demonstrated their effectiveness in piroxicam delivery for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Artificial Intelligence , Drug Delivery Systems , Humans , Injections, Intra-Articular , Nanoparticles/chemistry , Piroxicam
8.
Drug Deliv ; 29(1): 1212-1231, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35403519

ABSTRACT

The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti-melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.


Subject(s)
Chitosan , Melanosis , Nanoparticles , Skin Lightening Preparations , Animals , Arbutin , Humans , Hydrogels , Melanins/therapeutic use , Melanosis/drug therapy , Mice , Skin Lightening Preparations/therapeutic use
9.
Pharmaceutics ; 14(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35335847

ABSTRACT

This research assesses the beneficial effects of loading terconazole, a poorly water-soluble antifungal drug in silica/chitosan nanoparticles (SCNs) for ocular delivery. Nanoparticles were fabricated by the simple mixing of tetraethyl ortho silicate (TEOS) and chitosan HCl as sources of silica and nitrogen, respectively, along with alcoholic drug solution in different concentrations. Freeze-dried nanoparticles were fabricated using cyclodextrins as cryoprotectants. SCNs were assessed for their particle size, PDI, yield, drug loading and in vitro release studies. A 23.31 full factorial experimental design was constructed to optimize the prepared SCNs. DSC, XRD, FTIR, in addition to morphological scanning were performed on the optimized nanoparticles followed by an investigation of their pharmacokinetic parameters after topical ocular application in male Albino rabbits. The results reveal that increasing the water content in the preparations causes an increase in the yield and size of nanoparticles. On the other hand, increasing the TEOS content in the preparations, caused a decrease in the yield and size of nanoparticles. The optimized formulation possessed excellent mucoadhesive properties with potential safety concerning the investigated rabbit eye tissues. The higher Cmax and AUC0-24 values coupled with a longer tmax value compared to the drug suspension in the rabbits' eyes indicated the potential of SCNs as promising ocular carriers for poorly water-soluble drugs, such as terconazole.

10.
Eur J Pharm Sci ; 158: 105648, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33227347

ABSTRACT

Glaucoma, being asymptomatic for relatively late stage, is recognized as a worldwide cause of irreversible vision loss. The eye is an impervious organ that exhibits natural anatomical and physiological barriers which renders the design of an efficient ocular delivery system a formidable task and challenge scientists to find alternative formulation approaches. In the field of glaucoma treatment, smart delivery systems for targeting have aroused interest in the topical ocular delivery field owing to its potentiality to oppress many treatment challenges associated with many of glaucoma types. The current momentum of nano-pharmaceuticals, in the development of advanced drug delivery systems, hold promises for much improved therapies for glaucoma to reduce its impact on vision loss. In this review, a brief about glaucoma; its etiology, predisposing factors and different treatment modalities has been reviewed. The diverse ocular drug delivery systems currently available or under investigations have been presented. Additionally, future foreseeing of new drug delivery systems that may represent potential means for more efficient glaucoma management are overviewed. Finally, a gab-analysis for the required investigation to pave the road for commercialization of ocular novel-delivery systems based on the nano-technology are discussed.


Subject(s)
Glaucoma , Drug Delivery Systems , Eye , Glaucoma/drug therapy , Humans , Nanotechnology
11.
AAPS PharmSciTech ; 19(3): 1001-1010, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29110291

ABSTRACT

Non-ionic surfactant (NIS) based in situ forming vesicles (ISVs) present an affordable alternative to the traditional systems for the parenteral control of drug release. In this work, NIS based ISVs encapsulating tenoxicam were prepared using the emulsion method. Tenoxicam-loaded ISVs were prepared using a 22.31 full factorial experimental design, where three factors were evaluated as independent variables; type of NIS (A), molar ratio of NIS to Tween®80 (B), and phase ratio of the internal ethyl acetate to the external Captex® oil phase (C). Percentage drug released after 1 h, particle size of the obtained vesicles and mean dissolution time were chosen as the dependent variables. Selected formulation was subjected to morphological investigation, injectability, viscosity measurements, and solid state characterization. Optimum formulation showed spherical nano-vesicles in the size of 379.08 nm with an initial drug release of 37.32% in the first hour followed by a sustained drug release pattern for 6 days. DSC analysis of the optimized formulation confirmed the presence of the drug in an amorphous form with the nano-vesicles. Biological evaluation of the selected formulation was performed on New Zealand rabbits by IM injection. The prepared ISVs exhibited a 45- and 28-fold larger AUC and MRT values, respectively, compared to those of the drug suspension. The obtained findings boost the use of ISVs for the treatment of many chronic inflammatory conditions.


Subject(s)
Drug Carriers/chemistry , Surface-Active Agents/chemistry , Animals , Delayed-Action Preparations , Drug Liberation , Emulsions , Male , Particle Size , Piroxicam/administration & dosage , Piroxicam/analogs & derivatives , Polysorbates , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...