Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 02 18.
Article in English | MEDLINE | ID: mdl-36851781

ABSTRACT

The analysis of T-cell responses in HIV-1-infected controllers may contribute to a better understanding of the protective components of the immune system. Here, we analyzed the HIV-1-specific T-cell response in a 59-year-old HIV-1-infected controller, infected for at least seven years, who presented with low viral loads ranging from <20 copies/mL to 200 copies/mL and normal CD4 counts of >800 cells/µL. In γ-IFN-ELISpot assays using freshly isolated PBMCs, he displayed a very strong polyclonal T-cell response to eight epitopes in Gag, Nef and Rev; with the dominant responses directed against the HLA-B*57-epitope AISPRTLNAW and against a so-far-unknown epitope within Rev. Further analyses using peptide-stimulated T-cell lines in γ-IFN-ELISpot assays delineated the peptide RQRQIRSI (Rev-RI8) as a newly defined HLA-B*52-restricted epitope located within a functionally important region of Rev. Peptide-stimulation assays in 15 HLA-B*52-positive HIV-1-infected subjects, including the controller, demonstrated recognition of the Rev-RI8 epitope in 6/15 subjects. CD4 counts before the start of antiviral therapy were significantly higher in subjects with recognition of the Rev-RI8 epitope. Targeting of the Rev-RI8 epitope in Rev by CTL could contribute to the positive association of HLA-B*52 with a more favorable course of HIV-1-infection.


Subject(s)
HIV Seropositivity , HIV-1 , Male , Humans , Middle Aged , Biological Assay , Epitopes , HLA-B Antigens/genetics
2.
Viruses ; 14(3)2022 03 21.
Article in English | MEDLINE | ID: mdl-35337058

ABSTRACT

Only limited data are available regarding the immunogenicity of the BNT162b2 mRNA vaccine in HIV-1+ patients. Therefore, we investigated the humoral immune response after BNT162b2-mRNA vaccination or SARS-CoV-2 infection in HIV-1+ patients on antiretroviral therapy compared to HIV-1-uninfected subjects. Serum and saliva samples were analysed by SARS-CoV-2 spike-specific IgG and IgA ELISAs and a surrogate neutralization assay. While all subjects developed anti-spike IgG and IgA and neutralizing antibodies in serum after two doses of BNT162b2 mRNA vaccine, the HIV-1+ subjects displayed significantly lower neutralizing capacity and anti-spike IgA in serum compared to HIV-1-uninfected subjects. Serum levels of anti-spike IgG and neutralizing activity were significantly higher in vaccinees compared to SARS-CoV-2 convalescents irrespective of HIV-1 status. Among SARS-CoV-2 convalescents, there was no significant difference in spike-specific antibody response between HIV-1+ and uninfected subjects. In saliva, anti-spike IgG and IgA antibodies were detected both in vaccinees and convalescents, albeit at lower frequencies compared to the serum and only rarely with detectable neutralizing activity. In summary, our study demonstrates that the BNT162b2 mRNA vaccine induces SARS-CoV-2-specific antibodies in HIV-1-infected patients on antiretroviral therapy, however, lower vaccine induced neutralization activity indicates a lower functionality of the humoral vaccine response in HIV-1+ patients.


Subject(s)
COVID-19 , HIV-1 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Humans , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
Front Immunol ; 12: 627568, 2021.
Article in English | MEDLINE | ID: mdl-33995351

ABSTRACT

The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Common Cold/immunology , Epitopes, T-Lymphocyte/immunology , Nucleoproteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , COVID-19/genetics , COVID-19/pathology , Cell Line , Common Cold/genetics , Common Cold/pathology , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Female , Humans , Male , Middle Aged , Nucleoproteins/genetics , SARS-CoV-2/genetics , T-Lymphocytes, Cytotoxic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...