Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 11574, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463916

ABSTRACT

This work sought to develop a robust and clinically relevant swine model of critical limb ischemia (CLI) involving the onset of ischemic muscle necrosis. CLI carries about 25-40% risk of major amputation with 20% annual mortality. Currently, there is no specific treatment that targets the ischemic myopathy characteristic of CLI. Current swine models of CLI, with tolerable side-effects, fail to achieve sustained ischemia followed by a necrotic myopathic endpoint. Such limitation in experimental model hinders development of effective interventions. CLI was induced unilaterally by ligation-excision of one inch of the common femoral artery (CFA) via infra-inguinal minimal incision in female Yorkshire pigs (n = 5). X-ray arteriography was done pre- and post-CFA transection to validate successful induction of severe ischemia. Weekly assessment of the sequalae of ischemia on limb perfusion, and degree of ischemic myopathy was conducted for 1 month using X-ray arteriography, laser speckle imaging, CTA angiography, femoral artery duplex, high resolution ultrasound and histopathological analysis. The non-invasive tissue analysis of the elastography images showed specific and characteristic pattern of increased muscle stiffness indicative of the fibrotic and necrotic outcome expected with associated total muscle ischemia. The prominent onset of skeletal muscle necrosis was evident upon direct inspection of the affected tissues. Ischemic myopathic changes associated with inflammatory infiltrates and deficient blood vessels were objectively validated. A translational model of severe hindlimb ischemia causing ischemic myopathy was successfully established adopting an approach that enables long-term survival studies in compliance with regulatory requirements pertaining to animal welfare.


Subject(s)
Muscular Diseases , Rhabdomyolysis , Swine , Female , Animals , Chronic Limb-Threatening Ischemia , Hindlimb/blood supply , Rhabdomyolysis/complications , Muscular Diseases/pathology , Ischemia/pathology , Necrosis/pathology , Muscle, Skeletal/pathology , Disease Models, Animal
2.
J Invest Dermatol ; 143(10): 2052-2064.e5, 2023 10.
Article in English | MEDLINE | ID: mdl-37044260

ABSTRACT

Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.


Subject(s)
Keratin-6 , Pyocyanine , Humans , Pyocyanine/chemistry , Pyocyanine/metabolism , Keratin-6/metabolism , Skin/metabolism , Mitochondria/metabolism
3.
Nat Commun ; 14(1): 1129, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854749

ABSTRACT

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Subject(s)
Fibroblasts , Skin , Wound Healing , Animals , Humans , Mice , Antagomirs/pharmacology , Antagomirs/therapeutic use , Fibroblasts/metabolism , Fibroblasts/physiology , Oligonucleotides/pharmacology , Skin/metabolism , Wound Healing/genetics , Wound Healing/physiology
4.
Mol Ther ; 31(2): 454-470, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36114673

ABSTRACT

Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and ß-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.


Subject(s)
MicroRNAs , Wound Healing , Pregnancy , Humans , Female , Wound Healing/genetics , Skin/metabolism , Keratinocytes/metabolism , Cell Movement , MicroRNAs/metabolism
5.
NPJ Regen Med ; 7(1): 63, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266362

ABSTRACT

This work rests on our non-viral tissue nanotransfection (TNT) platform to deliver MyoD (TNTMyoD) to injured tissue in vivo. TNTMyoD was performed on skin and successfully induced expression of myogenic factors. TNTMyoD was then used as a therapy 7 days following volumetric muscle loss (VML) of rat tibialis anterior and rescued muscle function. TNTMyoD is promising as VML intervention.

6.
Cell Rep Med ; 3(6): 100656, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732145

ABSTRACT

Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.


Subject(s)
Inovirus , Pseudomonas Infections , Wound Infection , Animals , Biofilms , Humans , Mammals , Prospective Studies , Pseudomonas , Pseudomonas Infections/therapy , Pseudomonas aeruginosa , Wound Healing , Wound Infection/therapy
7.
PLoS One ; 15(11): e0241831, 2020.
Article in English | MEDLINE | ID: mdl-33227015

ABSTRACT

Non-invasive, repeated interrogation of the same wound is necessary to understand the tissue repair continuum. In this work, we sought to test the significance of non-invasive high-frequency high-resolution ultrasound technology for such interrogation. High-frequency high-resolution ultrasound imaging was employed to investigate wound healing under fetal and adult conditions. Quantitative tissue cellularity and elastic strain was obtained for visualization of unresolved inflammation using Vevo strain software. Hemodynamic properties of the blood flow in the artery supplying the wound-site were studied using color Doppler flow imaging. Non-invasive monitoring of fetal and adult wound healing provided unprecedented biomechanical and functional insight. Fetal wounds showed highly accelerated closure with transient perturbation of wound tissue cellularity. Fetal hemodynamics was unique in that sharp fall in arterial pulse pressure (APP) which was rapidly restored within 48h post-wounding. In adults, APP transiently increased post-wounding before returning to the pre-wounding levels by d10 post-wounding. The pattern of change in the elasticity of wound-edge tissue of diabetics was strikingly different. Severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of the non-diabetic group. Wound bed of adult diabetic mice (db/db) showed persistent hypercellularity compared to littermate controls (db/+) indicative of prolonged inflammation. Normal skin strain of db/+ and db/db were asynchronous. In db/db, severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of non-diabetics. This study showcases a versatile clinically relevant imaging platform suitable for real-time analyses of functional wound healing.


Subject(s)
Diagnostic Imaging/methods , Ultrasonography/methods , Animals , Biomechanical Phenomena , Female , Hemodynamics/physiology , Imaging, Three-Dimensional/methods , Mice , Pregnancy , Wound Healing/physiology
8.
ACS Nano ; 14(10): 12732-12748, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32931251

ABSTRACT

Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.


Subject(s)
Exosomes , Animals , Keratinocytes , Macrophages , Mice , Skin , Wound Healing
9.
FASEB J ; 33(2): 2144-2155, 2019 02.
Article in English | MEDLINE | ID: mdl-30260708

ABSTRACT

Decellularized matrices of biologic tissue have performed well as wound care dressings. Extracellular matrix-based dressings are subject to rapid degradation by excessive protease activity at the wound environment. Stabilized, acellular, equine pericardial collagen matrix (sPCM) wound care dressing is flexible cross-linked proteolytic enzyme degradation resistant. sPCM was structurally characterized utilizing scanning electron and atomic force microscopy. In murine excisional wounds, sPCM was effective in mounting an acute inflammatory response. Postwound inflammation resolved rapidly, as indicated by elevated levels of IL-10, arginase-1, and VEGF, and lowering of IL-1ß and TNF-α. sPCM induced antimicrobial proteins S100A9 and ß-defensin-1 in keratinocytes. Adherence of Pseudomonas aeruginosa and Staphylococcus aureus on sPCM pre-exposed to host immune cells in vivo was inhibited. Excisional wounds dressed with sPCM showed complete closure at d 14, while control wounds remained open. sPCM accelerated wound re-epithelialization. sPCM not only accelerated wound closure but also improved the quality of healing by increased collagen deposition and maturation. Thus, sPCM is capable of presenting scaffold functionality during the course of wound healing. In addition to inducing endogenous antimicrobial defense systems, the dressing itself has properties that minimize biofilm formation. It mounts robust inflammation, a process that rapidly resolves, making way for wound healing to advance.-El Masry, M. S., Chaffee, S., Das Ghatak, P., Mathew-Steiner, S. S., Das, A., Higuita-Castro, N., Roy, S., Anani, R. A., Sen, C. K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization.


Subject(s)
Bandages , Collagen/pharmacology , Extracellular Matrix/metabolism , Inflammation/prevention & control , Keratinocytes/drug effects , Macrophages/drug effects , Re-Epithelialization , Wound Healing/drug effects , Animals , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Cells, Cultured , Disease Models, Animal , Horses , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Keratinocytes/metabolism , Keratinocytes/microbiology , Macrophages/metabolism , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
10.
Mol Ther ; 26(9): 2178-2188, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29802017

ABSTRACT

Lyophilized keratinocyte-targeted nanocarriers (TLNκ) loaded with locked nucleic acid (LNA) modified anti-miR were developed for topical application to full thickness burn injury. TLNκ were designed to selectively deliver LNA-anti-miR-107 to keratinocytes using the peptide sequence ASKAIQVFLLAG. TLNκ employed DOTAP/DODAP combination pH-responsive lipid components to improve endosomal escape. To minimize interference of clearance by non-targeted cells, especially immune cells in the acute wound microenvironment, surface charge was neutralized. Lyophilization was performed to extend the shelf life of the lipid nanoparticles (LNPs). Encapsulation efficiency of anti-miR in lyophilized TLNκ was estimated to be 96.54%. Cargo stability of lyophilized TLNκ was tested. After 9 days of loading with anti-miR-210, TLNκ was effective in lowering abundance of the hypoxamiR miR-210 in keratinocytes challenged with hypoxia. Keratinocyte uptake of DiD-labeled TLNκ was selective and exceeded 90% within 4 hr. Topical application of hydrogel-dispersed lyophilized TLNκ encapsulating LNA anti-miR-107 twice a week significantly accelerated wound closure and restoration of skin barrier function. TLNκ/anti-miR-107 application depleted miR-107 and upregulated dicer expression, which accelerated differentiation of keratinocytes. Expression of junctional proteins such as claudin-1, loricrin, filaggrin, ZO-1, and ZO-2 were significantly upregulated following TLNκ/anti-miR-107 treatment. These LNPs are promising as topical therapeutic agents in the management of burn injury.


Subject(s)
Burns/drug therapy , Freeze Drying , Lipids/chemistry , Nanoparticles/chemistry , Skin/pathology , Animals , Antagomirs/administration & dosage , Antagomirs/therapeutic use , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Filaggrin Proteins , Flow Cytometry , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice , MicroRNAs/metabolism , Skin/drug effects , Wound Healing
11.
Mol Ther ; 25(11): 2502-2512, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28803863

ABSTRACT

Unlike the epidermis, which regenerates continually, hair follicles anchored in the subcutis periodically regenerate by spontaneous repetitive cycles of growth (anagen), degeneration (catagen), and rest (telogen). The loss of hair follicles in response to injuries or pathologies such as alopecia endangers certain inherent functions of the skin. Thus, it is of interest to understand mechanisms underlying follicular regeneration in adults. In this work, a phytochemical rich in the natural vitamin E tocotrienol (TRF) served as a productive tool to unveil a novel epidermal pathway of hair follicular regeneration. Topical TRF application markedly induced epidermal hair follicle development akin to that during fetal skin development. This was observed in the skin of healthy as well as diabetic mice, which are known to be resistant to anagen hair cycling. TRF suppressed epidermal E-cadherin followed by 4-fold induction of ß-catenin and its nuclear translocation. Nuclear ß-catenin interacted with Tcf3. Such sequestration of Tcf3 from its otherwise known function to repress pluripotent factors induced the plasticity factors Oct4, Sox9, Klf4, c-Myc, and Nanog. Pharmacological inhibition of ß-catenin arrested anagen hair cycling by TRF. This work reports epidermal E-cadherin/ß-catenin as a novel pathway capable of inducing developmental folliculogenesis in the adult skin.


Subject(s)
Cadherins/genetics , Hair Follicle/drug effects , Phytochemicals/pharmacology , Regeneration/drug effects , Tocotrienols/pharmacology , beta Catenin/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cadherins/antagonists & inhibitors , Cadherins/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Gene Expression Regulation , Hair Follicle/growth & development , Hair Follicle/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Regeneration/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , beta Catenin/agonists , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...