Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 142: 170568, 2021 08.
Article in English | MEDLINE | ID: mdl-33965442

ABSTRACT

There is growing evidence that apelin plays a role in the regulation of the cardiovascular system by increasing myocardial contractility and acting as a vasodilator. However, it remains unclear whether apelin improves cardiac contractility in a load-dependent or independent manner in pathological conditions. For this purpose we investigated the cardiovascular effects of apelin in α-actin transgenic mice (mActin-Tg mice), a model of cardiomyopathy. [Pyr1]apelin-13 was administered by continuous infusion at 2 mg/kg/d for 3 weeks. Effects on cardiac function were determined by echocardiography and a Pressure-Volume (PV) analysis. mActin-Tg mice showed a dilated cardiomyopathy (DCM) phenotype similar to that encountered in patients expressing the same mutation. Compared to WT animals, mActin-Tg mice displayed cardiac systolic impairment [significant decrease in ejection fraction (EF), cardiac output (CO), and stroke volume (SV)] associated with cardiac ventricular dilation and diastolic dysfunction, characterized by an impairment in mitral flow velocity (E/A) and in deceleration time (DT). Load-independent myocardial contractility was strongly decreased in mActin-Tg mice while total peripheral vascular resistance (TPR) was significantly increased. As compared to vehicle-treated animals, a 3-week treatment with [Pyr1]apelin-13 significantly improved EF%, SV, E/A, DT and corrected TPR, with no significant effect on load-independent indices of myocardial contractility, blood pressure and heart rate. In conclusion [Pyr1]apelin-13 displayed no intrinsic contractile effect but improved cardiac function in dilated cardiomyopathy mainly by reducing peripheral vascular resistance, with no change in blood pressure.


Subject(s)
Apelin/pharmacology , Cardiomyopathy, Dilated/drug therapy , Peripheral Vascular Diseases/prevention & control , Vascular Resistance , Vasodilation , Animals , Blood Pressure , Cardiomyopathy, Dilated/pathology , Disease Models, Animal , Heart Rate , Humans , Mice , Mice, Transgenic , Peripheral Vascular Diseases/pathology , Stroke Volume
2.
Neurobiol Dis ; 100: 52-61, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28057519

ABSTRACT

The HANAC syndrome is caused by mutations in the gene coding for collagen4a1, a major component of blood vessel basement membranes. Ocular symptoms include an increase in blood vessel tortuosity and occasional hemorrhages. To examine how vascular defects can affect neuronal function, we analyzed the retinal phenotype of a HANAC mouse model. Heterozygous mutant mice displayed both a thinning of the basement membrane in retinal blood vessels and in Bruch's membrane resulting in vascular leakage. Homozygous mice had additional vascular changes, including greater vessel coverage and tortuosity. This greater tortuosity was associated to higher expression levels of vascular endothelial growth factor (VEGF). These major changes to the blood vessels were correlated with photoreceptor dysfunction and degeneration. The neuronal damage was associated with reactive gliosis in astrocytes and Müller glial cells, and by the migration of microglial cells into the outer retina. This study illustrates how vascular changes can trigger neuronal degeneration in a new model of HANAC syndrome that can be used to further study dysfunctions of neurovascular coupling. SUMMARY STATEMENT: This study provides a phenotypic analysis of a novel mouse model of HANAC syndrome focusing on the retinal aspect. It recapitulates most of the aspects of the human disease and is therefore a great tool to study and to address this condition.


Subject(s)
Collagen Type IV/genetics , Muscle Cramp/genetics , Mutation/genetics , Neurons/pathology , Raynaud Disease/genetics , Retinal Vessels/abnormalities , Animals , Disease Models, Animal , Mice, Transgenic , Neuroglia/metabolism , Neurons/metabolism , Retina/metabolism , Retinal Vessels/metabolism , Vascular Endothelial Growth Factor A/metabolism
3.
Hum Mol Genet ; 25(14): 3070-3079, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27288449

ABSTRACT

Dystrophin-Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells that provide a mechanical link at the Müller cell membrane by direct binding to actin and a transmembrane protein complex. Its absence has been related to blood-retinal barrier (BRB) permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels (1). We have previously shown that the adeno-associated virus (AAV) variant, ShH10, transduces Müller cells in the Dp71-null mouse retina efficiently and specifically (2,3). Here, we use ShH10 to restore Dp71 expression in Müller cells of Dp71 deficient mouse to study molecular and functional effects of this restoration in an adult mouse displaying retinal permeability. We show that strong and specific expression of exogenous Dp71 in Müller cells leads to correct localization of Dp71 protein restoring all protein interactions in order to re-establish a proper functional BRB and retina homeostasis thus preventing retina from oedema. This study is the basis for the development of new therapeutic strategies in dealing with diseases with BRB breakdown and macular oedema such as diabetic retinopathy (DR).


Subject(s)
Blood-Retinal Barrier/drug effects , Dystrophin/genetics , Edema/therapy , Genetic Therapy , Animals , Dependovirus/genetics , Dystrophin/deficiency , Dystrophin/therapeutic use , Edema/genetics , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Humans , Mice , Mice, Knockout , Retina/growth & development , Retina/pathology
4.
J Vis Exp ; (98)2015 Apr 19.
Article in English | MEDLINE | ID: mdl-25938717

ABSTRACT

Müller cells are the principal glial cells of the retina. Their end-feet form the limits of the retina at the outer and inner limiting membranes (ILM), and in conjunction with astrocytes, pericytes and endothelial cells they establish the blood-retinal barrier (BRB). BRB limits material transport between the bloodstream and the retina while the ILM acts as a basement membrane that defines histologically the border between the retina and the vitreous cavity. Labeling Müller cells is particularly relevant to study the physical state of the retinal barriers, as these cells are an integral part of the BRB and ILM. Both BRB and ILM are frequently altered in retinal disease and are responsible for disease symptoms. There are several well-established methods to study the integrity of the BRB, such as the Evans blue assay or fluorescein angiography. However these methods do not provide information on the extent of BRB permeability to larger molecules, in nanometer range. Furthermore, they do not provide information on the state of other retinal barriers such as the ILM. To study BRB permeability alongside retinal ILM, we used an AAV based method that provides information on permeability of BRB to larger molecules while indicating the state of the ILM and extracellular matrix proteins in disease states. Two AAV variants are useful for such study: AAV5 and ShH10. AAV5 has a natural tropism for photoreceptors but it cannot get across to the outer retina when administered into the vitreous when the ILM is intact (i.e., in wild-type retinas). ShH10 has a strong tropism towards glial cells and will selectively label Müller glia in both healthy and diseased retinas. ShH10 provides more efficient gene delivery in retinas where ILM is compromised. These viral tools coupled with immunohistochemistry and blood-DNA analysis shed light onto the state of retinal barriers in disease.


Subject(s)
Blood-Retinal Barrier/physiopathology , Dependovirus/physiology , Retinal Diseases/physiopathology , Animals , Blood-Retinal Barrier/pathology , Blood-Retinal Barrier/virology , Capillary Permeability , Dependovirus/genetics , Ependymoglial Cells/chemistry , Ependymoglial Cells/pathology , Ependymoglial Cells/virology , Gene Transfer Techniques , Genes, Reporter , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Pericytes/chemistry , Pericytes/pathology , Pericytes/virology , Retinal Diseases/pathology , Retinal Diseases/virology , Transfection
5.
Hum Mol Genet ; 24(14): 3939-47, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25901007

ABSTRACT

We have previously shown that the deletion of the dystrophin Dp71 gene induces a highly permeable blood-retinal barrier (BRB). Given that BRB breakdown is involved in retinal inflammation and the pathophysiology of many blinding eye diseases, here we investigated whether the absence of Dp71 brings out retinal vascular inflammation and vessel loss by using specific Dp71-null mice. The expression of vascular endothelial growth factor (VEGF), quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods, was higher in the retina of Dp71-null mice than in wild-type mice. In contrast, no differences were observed in VEGFR-2 and tumor necrosis factor-α expression. Moreover, mRNA expression of water channel, aquaporin 4 (AQP4) was increased after Dp71 deletion. The Dp71 deletion was also associated with the overexpression of intercellular adhesion molecule 1, which is expressed on endothelial cells surface to recruit leukocytes. Consistent with these findings, the total number of adherent leukocytes per retina, assessed after perfusion with fluorescein isothiocyanate-conjugated concanavalin A, was increased in the absence of Dp71. Finally, a significant increase in capillary degeneration quantified after retinal trypsin digestion was observed in mice lacking Dp71. These data illustrate for the first time that the deletion of Dp71 was associated with retinal vascular inflammation, vascular lesions with increased leukocyte adhesion and capillary degeneration. Thus, dystrophin Dp71 could play a critical role in retinal vascular inflammation disease, and therefore represent a potential therapeutic target.


Subject(s)
Dystrophin/genetics , Gene Deletion , Inflammation/genetics , Retina/pathology , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Blood-Retinal Barrier , Caspase 3/genetics , Caspase 3/metabolism , Enzyme-Linked Immunosorbent Assay , Glial Fibrillary Acidic Protein , Inflammation/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinal Diseases/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
6.
Glia ; 58(14): 1663-8, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20578032

ABSTRACT

Microglial cells (MCs) are active sensors and reactive phagocytes of neural tissues. They are known to migrate and accumulate in areas of neuronal damage. Thus, microglial locomotion is an essential feature of the inflammatory reaction in neural tissue. Yet, to our knowledge there has been no report of direct in vivo observation of the migration of MCs. Here, we show that intravitreally injected cyanine dyes (DiO, DiI, and indocyanine green) are sequestrated in MCs during several months, and subsequently in vivo images of these fluorescent MCs can be obtained by confocal scanning laser ophthalmoscopy. This enabled noninvasive, time-lapse observation of the migrating behavior of MCs, both in the basal state and following laser damage. In the basal state, a slow, intermittent, random-like locomotion was observed. Following focal laser damage, MCs promptly (i.e., within 1 h) initiated centripetal, convergent migration. MCs up to 400 µm away migrated into the scar at velocities up to 7 µm/min. This early phase of centripetal migration was followed by a more prolonged phase of nontargeted locomotion around and within injured sites during at least 24 h. Cyanine-positive cells persisted within the scar during several weeks. To our knowledge, this is the first in vivo observation of the locomotion of individual MCs. Our results show that the locomotion of MCs is not limited to translocation to acutely damaged area, but may also be observed in the basal state and after completion of the recruitment of MCs into scars.


Subject(s)
Cell Movement/physiology , Fluorescent Dyes/pharmacokinetics , Microglia/physiology , Microscopy, Confocal/methods , Retina/cytology , Retina/physiology , Staining and Labeling/methods , Animals , Male , Mice , Mice, Transgenic , Microglia/cytology , Rats , Rats, Long-Evans
7.
PLoS One ; 4(10): e7329, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19809515

ABSTRACT

Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions.


Subject(s)
Dystrophin/physiology , Retina/metabolism , Water-Electrolyte Balance/genetics , Animals , Aquaporin 4/biosynthesis , Capillary Permeability/genetics , Dystrophin/genetics , Dystrophin/metabolism , Electrophysiology , Gliosis/pathology , Homeostasis , Mice , Mice, Inbred C57BL , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/biosynthesis , Retinal Degeneration/metabolism , Retinal Vessels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...