Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36512492

ABSTRACT

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Subject(s)
Acinetobacter baumannii , Humans , Mice , Animals , Dihydroorotate Dehydrogenase , Microbial Sensitivity Tests , Meropenem , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33876936

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Subject(s)
Antimalarials/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrroles/pharmacology , Animals , Antimalarials/chemistry , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Mice , Plasmodium falciparum/drug effects , Pyrroles/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 63(9): 4929-4956, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32248693

ABSTRACT

Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.


Subject(s)
Antimalarials/therapeutic use , Enzyme Inhibitors/therapeutic use , Malaria, Falciparum/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrroles/therapeutic use , Animals , Antimalarials/chemical synthesis , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Male , Mice, SCID , Microsomes, Liver/metabolism , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium vivax/drug effects , Plasmodium vivax/enzymology , Protein Binding , Pyrroles/chemical synthesis , Pyrroles/metabolism , Pyrroles/pharmacokinetics , Rats , Structure-Activity Relationship
4.
ACS Infect Dis ; 5(1): 90-101, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30375858

ABSTRACT

Malaria is one of the most challenging human infectious diseases, and both prevention and control have been hindered by the development of Plasmodium falciparum resistance to existing therapies. Several new compounds with novel mechanisms are in clinical development for the treatment of malaria, including DSM265, an inhibitor of Plasmodium dihydroorotate dehydrogenase. To explore the mechanisms by which resistance might develop to DSM265 in the field, we selected for DSM265-resistant P. falciparum parasites in vitro. Any of five different amino acid changes led to reduced efficacy on the parasite and to decreased DSM265 binding to P. falciparum DHODH. The DSM265-resistant parasites retained full sensitivity to atovaquone. All but one of the observed mutations were in the DSM265 binding site, and the remaining C276F was in the adjacent flavin cofactor site. The C276F mutation was previously identified in a recrudescent parasite during a Phase IIa clinical study. We confirmed that this mutation (and the related C276Y) accounted for the full level of observed DSM265 resistance by regenerating the mutation using CRISPR/Cas9 genome editing. X-ray structure analysis of the C276F mutant enzyme showed that conformational changes of nearby residues were required to accommodate the larger F276 residue, which in turn led to a restriction in the size of the DSM265 binding pocket. These findings underscore the importance of developing DSM265 as part of a combination therapy with other agents for successful use against malaria.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Point Mutation , Pyrimidines/pharmacology , Triazoles/pharmacology , Amino Acid Sequence , Animals , Binding Sites , CRISPR-Cas Systems , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Gene Editing , Humans , Malaria, Falciparum , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology
5.
ACS Omega ; 3(8): 9227-9240, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30197997

ABSTRACT

Malaria kills nearly 0.5 million people yearly and impacts the lives of those living in over 90 countries where it is endemic. The current treatment programs are threatened by increasing drug resistance. Dihydroorotate dehydrogenase (DHODH) is now clinically validated as a target for antimalarial drug discovery as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. We discovered a related isoxazolopyrimidine series in a phenotypic screen, later determining that it targeted DHODH. To determine if the isoxazolopyrimidines could yield a drug candidate, we initiated hit-to-lead medicinal chemistry. Several potent analogues were identified, including a compound that showed in vivo antimalarial activity. The isoxazolopyrimidines were more rapidly metabolized than their triazolopyrimidine counterparts, and the pharmacokinetic data were not consistent with the goal of a single-dose treatment for malaria.

6.
ACS Infect Dis ; 2(12): 945-957, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27641613

ABSTRACT

The emergence of drug-resistant malaria parasites continues to hamper efforts to control this lethal disease. Dihydroorotate dehydrogenase has recently been validated as a new target for the treatment of malaria, and a selective inhibitor (DSM265) of the Plasmodium enzyme is currently in clinical development. With the goal of identifying a backup compound to DSM265, we explored replacement of the SF5-aniline moiety of DSM265 with a series of CF3-pyridinyls while maintaining the core triazolopyrimidine scaffold. This effort led to the identification of DSM421, which has improved solubility, lower intrinsic clearance, and increased plasma exposure after oral dosing compared to DSM265, while maintaining a long predicted human half-life. Its improved physical and chemical properties will allow it to be formulated more readily than DSM265. DSM421 showed excellent efficacy in the SCID mouse model of P. falciparum malaria that supports the prediction of a low human dose (<200 mg). Importantly DSM421 showed equal activity against both P. falciparum and P. vivax field isolates, while DSM265 was more active on P. falciparum. DSM421 has the potential to be developed as a single-dose cure or once-weekly chemopreventative for both P. falciparum and P. vivax malaria, leading to its advancement as a preclinical development candidate.


Subject(s)
Enzyme Inhibitors/administration & dosage , Malaria, Falciparum/prevention & control , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Dihydroorotate Dehydrogenase , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
7.
J Med Chem ; 59(11): 5416-31, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27127993

ABSTRACT

Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Malaria, Falciparum/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Triazoles/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dihydroorotate Dehydrogenase , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, SCID , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
8.
J Chem Inf Model ; 56(3): 548-62, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26915022

ABSTRACT

Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 µM, three of which exhibited IC50 values in the range of 0.38-20 µM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 µM. In addition to this, 13 compounds inhibited parasite growth with IC50 values of ≤ 50 µM, 4 of which showed IC50 values in the range of 5-12 µM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Animals , Dihydroorotate Dehydrogenase , Humans , Plasmodium falciparum/enzymology , Quantitative Structure-Activity Relationship
9.
Sci Transl Med ; 7(296): 296ra111, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26180101

ABSTRACT

Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/chemistry , Triazoles/chemistry , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Area Under Curve , Caco-2 Cells , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Dogs , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Haplorhini , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Plasmodium falciparum , Pyrimidines/pharmacokinetics , Rabbits , Substrate Specificity , Triazoles/pharmacokinetics
10.
J Med Chem ; 58(14): 5579-98, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26079043

ABSTRACT

Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure-activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Antiviral Agents/chemical synthesis , Dihydroorotate Dehydrogenase , Drug Design , Enzyme Inhibitors/chemical synthesis , HEK293 Cells , Humans , Inhibitory Concentration 50 , Measles virus/drug effects , Measles virus/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Pyrazoles/chemical synthesis , Virus Replication/drug effects
11.
J Med Chem ; 57(12): 5381-94, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24801997

ABSTRACT

Malaria is one of the most serious global infectious diseases. The pyrimidine biosynthetic enzyme Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) is an important target for antimalarial chemotherapy. We describe a detailed analysis of protein-ligand interactions between DHODH and a triazolopyrimidine-based inhibitor series to explore the effects of fluorine on affinity and species selectivity. We show that increasing fluorination dramatically increases binding to mammalian DHODHs, leading to a loss of species selectivity. Triazolopyrimidines bind Plasmodium and mammalian DHODHs in overlapping but distinct binding sites. Key hydrogen-bond and stacking interactions underlying strong binding to PfDHODH are absent in the mammalian enzymes. Increasing fluorine substitution leads to an increase in the entropic contribution to binding, suggesting that strong binding to mammalian DHODH is a consequence of an enhanced hydrophobic effect upon binding to an apolar pocket. We conclude that hydrophobic interactions between fluorine and hydrocarbons provide significant binding energy to protein-ligand interactions. Our studies define the requirements for species-selective binding to PfDHODH and show that the triazolopyrimidine scaffold can alternatively be tuned to inhibit human DHODH, an important target for autoimmune diseases.


Subject(s)
Antimalarials/chemistry , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Pyrimidines/chemistry , Thiazoles/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Binding Sites , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Dogs , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Molecular Structure , Mutation , Oxidoreductases Acting on CH-CH Group Donors/genetics , Plasmodium falciparum/drug effects , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Species Specificity , Structure-Activity Relationship , Thermodynamics , Thiazoles/chemical synthesis , Thiazoles/pharmacology
12.
J Med Chem ; 55(17): 7425-36, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22877245

ABSTRACT

Plasmodium falciparum causes approximately 1 million deaths annually. However, increasing resistance imposes a continuous threat to existing drug therapies. We previously reported a number of potent and selective triazolopyrimidine-based inhibitors of P. falciparum dihydroorotate dehydrogenase that inhibit parasite in vitro growth with similar activity. Lead optimization of this series led to the recent identification of a preclinical candidate, showing good activity against P. falciparum in mice. As part of a backup program around this scaffold, we explored heteroatom rearrangement and substitution in the triazolopyrimidine ring and have identified several other ring configurations that are active as PfDHODH inhibitors. The imidazo[1,2-a]pyrimidines were shown to bind somewhat more potently than the triazolopyrimidines depending on the nature of the amino aniline substitution. DSM151, the best candidate in this series, binds with 4-fold better affinity (PfDHODH IC(50) = 0.077 µM) than the equivalent triazolopyrimidine and suppresses parasites in vivo in the Plasmodium berghei model.


Subject(s)
Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Pyrimidines/pharmacology , Animals , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Mice , Molecular Mimicry , Plasmodium berghei/drug effects , Pyrimidines/chemistry , Structure-Activity Relationship
13.
J Med Chem ; 55(9): 4205-19, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22435599

ABSTRACT

Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization.


Subject(s)
Antimalarials/administration & dosage , Antimalarials/chemistry , Malaria, Falciparum/drug therapy , Plasmodium falciparum/isolation & purification , Quinolines/administration & dosage , Quinolines/chemistry , Administration, Oral , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Biological Availability , Female , Hep G2 Cells , Humans , Malaria, Falciparum/parasitology , Mice , Mice, Inbred ICR , Nuclear Magnetic Resonance, Biomolecular , Parasitemia/drug therapy , Parasitemia/parasitology , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
14.
J Med Chem ; 54(15): 5540-61, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21696174

ABSTRACT

Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/chemistry , Triazoles/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chemical Phenomena , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Drug Resistance , Humans , Mice , Plasmodium falciparum/enzymology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Triazoles/pharmacology
15.
J Med Chem ; 54(11): 3935-49, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21517059

ABSTRACT

Malaria is one of the leading causes of severe infectious disease worldwide; yet, our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine-based Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom. Herein, we describe systematic efforts to optimize the aromatic functionality with the goal of improving potency and in vivo properties of compounds from the series. These studies led to the identification of two new substituted aniline moieties (4-SF(5)-Ph and 3,5-Di-F-4-CF(3)-Ph), which, when coupled to the triazolopyrimidine ring, showed good plasma exposure and better efficacy in the Plasmodium berghei mouse model of the disease than previously reported compounds from the series.


Subject(s)
Antimalarials/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Malaria/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrimidines/chemical synthesis , Triazoles/chemical synthesis , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Dihydroorotate Dehydrogenase , Disease Models, Animal , Drug Design , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Malaria/parasitology , Mice , Microsomes, Liver/metabolism , Molecular Structure , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Solubility , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacokinetics , Triazoles/pharmacology
16.
Nature ; 465(7296): 311-5, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20485428

ABSTRACT

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Subject(s)
Antimalarials/analysis , Antimalarials/pharmacology , Drug Discovery , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Animals , Antimalarials/isolation & purification , Cell Line , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Drug Therapy, Combination , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Phenotype , Phylogeny , Plasmodium falciparum/metabolism , Reproducibility of Results , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
17.
J Biol Chem ; 284(39): 26999-7009, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19640844

ABSTRACT

Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/pharmacology , Binding Sites , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Humans , Hydrogen Bonding , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Models, Molecular , Molecular Sequence Data , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Sequence Homology, Amino Acid , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
18.
J Med Chem ; 52(7): 1864-72, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19296651

ABSTRACT

Plasmodium falciparum causes 1-2 million deaths annually. Yet current drug therapies are compromised by resistance. We previously described potent and selective triazolopyrimidine-based inhibitors of P. falciparum dihydroorotate dehydrogenase (PfDHODH) that inhibited parasite growth in vitro; however, they showed no activity in vivo. Here we show that lack of efficacy against P. berghei in mice resulted from a combination of poor plasma exposure and reduced potency against P. berghei DHODH. For compounds containing naphthyl (DSM1) or anthracenyl (DSM2), plasma exposure was reduced upon repeated dosing. Phenyl-substituted triazolopyrimidines were synthesized leading to identification of analogs with low predicted metabolism in human liver microsomes and which showed prolonged exposure in mice. Compound 21 (DSM74), containing p-trifluoromethylphenyl, suppressed growth of P. berghei in mice after oral administration. This study provides the first proof of concept that DHODH inhibitors can suppress Plasmodium growth in vivo, validating DHODH as a new target for antimalarial chemotherapy.


Subject(s)
Antimalarials/chemical synthesis , Malaria/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Pyrimidines/chemical synthesis , Thiazoles/chemical synthesis , Triazoles/chemical synthesis , Administration, Oral , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Dihydroorotate Dehydrogenase , Humans , In Vitro Techniques , Malaria/parasitology , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
19.
J Med Chem ; 51(12): 3649-53, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18522386

ABSTRACT

A Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitor that is potent ( KI = 15 nM) and species-selective (>5000-fold over the human enzyme) was identified by high-throughput screening. The substituted triazolopyrimidine and its structural analogues were produced by an inexpensive three-step synthesis, and the series showed good association between PfDHODH inhibition and parasite toxicity. This study has identified the first nanomolar PfDHODH inhibitor with potent antimalarial activity in whole cells (EC50 = 79 nM).


Subject(s)
Antimalarials/chemical synthesis , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Pyrimidines/chemical synthesis , Thiazoles/chemical synthesis , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Dihydroorotate Dehydrogenase , Humans , Kinetics , Plasmodium falciparum/enzymology , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...