Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769950

ABSTRACT

In this paper, an artificial neural network (ANN) model is proposed to predict the hydration process of a new alternative binder. This model overcomes the lack of input parameters of physical models, providing a realistic explanation with few inputs and fast calculations. Indeed, four mortars are studied based on ordinary Portland cement (CEM I), cement with limited environmental impact (CEM III), and glass powder (GP) as the cement substitution. These mortars are named CEM I + GP and CEM III + GP. The properties of the mortars are characterized, and their life cycle assessment (LCA) is established. Indeed, a decrease in porosity is observed at 90 days by 4.6%, 2.5%, 12.4%, and 7.9% compared to those of 3 days for CEMI, CEMIII, CEMI + GP, and CEMIII + GP, respectively. In addition, the use of GP allows for reducing the mechanical strength in the short term. At 90 days, CEMI + GP and CEMIII + GP present a decrease of about 28% and 57% in compressive strength compared to CEMI and CEMIII, respectively. Nevertheless, strength does not cease increasing with the curing time, due to the continuous pozzolanic reactions between Ca(OH)2 and silica contained in GP and slag present in CEMIII as demonstrated by the thermo-gravimetrical (TG) analysis. To summarize, CEMIII mortar provides similar performance compared to mortar with CEMI + GP in the long term. This can later be used in the construction sector and particularly in prefabricated structural elements. Moreover, the ANN model used to predict the heat of hydration provides a similar result compared to the experiment, with a resulting R² of 0.997, 0.968, 0.968, and 0.921 for CEMI, CEMIII, CEMI + GP, and CEMIII + GP, respectively, and allows for identifying the different hydration modes of the investigated mortars. The proposed ANN model will allow cement manufacturers to quickly identify the different hydration modes of new binders by using only the heat of hydration test as an input parameter.

2.
Materials (Basel) ; 14(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34683808

ABSTRACT

The French gravel industry produces approximatively 6.5 million tons of gravel wash mud each year. This material offers very promising properties which require an in-depth characterization study before its use as a construction material, otherwise it is removed from value cycles by disposal in landfills. We examined the suitability of gravel wash mud and seashells, with fly ash as a binder, as an unfired earth construction material. Thermal and mechanical characterizations of the smart mixture composed of gravel wash mud, Crepidula fornicata shells and fly ash are performed. The new specimens exhibit high compressive strengths compared to usual earth construction materials, which appears as a good opportunity for a reduction in the thickness of walls. The use of fly ash and Crepidula shells in addition to gravel wash mud provides high silica and calcium contents, which both react with clay, leading to the formation of tobermorite and Al-tobermorite as a result of a pozzolanic reaction. Considering the reduction in porosity and improvements in strength, these new materials are good candidates to contribute significantly to the Sustainable Development Goals (SDGs) and reduce carbon emissions.

3.
Sci Rep ; 10(1): 7562, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32371944

ABSTRACT

Different polytypes of SiC are described and predicted in literature. Here, we report the first occurrence of an orthorhombic 6O-SiC polytype as rock-forming mineral in the nickel laterite mine of Tiebaghi (New Caledonia). This new class of SiC crystallizes in the space group Cmc21 with 12 atoms per unit cell [a = 3.0778(6) Å, b = 5.335(2) Å, c = 15.1219(6) Å, α = 90°, ß = 90°, γ = 120°]. The density of 6O-SiC is about 3.22 g/cm3 and the calculated indirect bandgap at room temperature of 3.56 eV is identical to 6H-SiC. Our results suggest that 6O-SiC is the intermediate state in the wurtzite to rocksalt transformation of 6H-SiC.

4.
J Appl Crystallogr ; 52(Pt 3): 618-625, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31236093

ABSTRACT

Detailed crystallographic information provided by X-ray diffraction (XRD) is complementary to molecular information provided by Raman spectroscopy. Accordingly, the combined use of these techniques allows the identification of an unknown compound without ambiguity. However, a full combination of Raman and XRD results requires an appropriate and reliable reference database with complete information. This is already available for XRD. The main objective of this paper is to introduce and describe the recently developed Raman Open Database (ROD, http://solsa.crystallography.net/rod). It comprises a collection of high-quality uncorrected Raman spectra. The novelty of this database is its interconnectedness with other open databases like the Crystallography Open Database (http://www.crystallography.net/cod and Theoretical Crystallography Open Database (http://www.crystallography.net/tcod/). The syntax adopted to format entries in the ROD is based on the worldwide recognized and used CIF format, which offers a simple way for data exchange, writing and description. ROD also uses JCAMP-DX files as an alternative format for submitted spectra. JCAMP-DX files are compatible to varying degrees with most commercial Raman software and can be read and edited using standard text editors.

5.
Sci Technol Adv Mater ; 17(1): 597-609, 2016.
Article in English | MEDLINE | ID: mdl-27877906

ABSTRACT

The effects of laser irradiation on γ-Fe2O3 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-Fe2O3 phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-Fe2O3 nanocrystals are isolated from each other and uniformly dispersed in silica matrix. The phase stability of maghemite nanocrystals was examined in situ under laser irradiation by Raman spectroscopy and compared with that resulting from heat treatment by X-ray diffraction. It was concluded that ε-Fe2O3 is an intermediate phase between γ-Fe2O3 and α-Fe2O3 and a series of distinct Raman vibrational bands were identified with the ε-Fe2O3 phase. The structural transformation of γ-Fe2O3 into α-Fe2O3 occurs either directly or via ε-Fe2O3, depending on the rate of nanocrystal agglomeration, the concentration of iron oxide in the nanocomposite and the properties of silica matrix. A phase diagram is established as a function of laser power density and concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...