Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Metabolites ; 12(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36005604

ABSTRACT

Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma ß-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (-/-) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.

4.
Commun Biol ; 4(1): 826, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211098

ABSTRACT

Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Insulin Resistance/genetics , Lipid Metabolism/genetics , Monocarboxylic Acid Transporters/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Monocarboxylic Acid Transporters/deficiency , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Oxygen Consumption/genetics
5.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33491666

ABSTRACT

Reduced expression of the plasma membrane citrate transporter INDY (acronym I'm Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.


Subject(s)
Blood Pressure/genetics , Blood Pressure/physiology , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/physiology , Sympathoadrenal System/physiology , Symporters/genetics , Symporters/physiology , Adrenal Glands/anatomy & histology , Adrenal Glands/physiology , Animals , Caloric Restriction , Catecholamines/biosynthesis , Cell Line , Chromaffin Cells/physiology , Dicarboxylic Acid Transporters/deficiency , Gene Expression , Heart Rate/genetics , Heart Rate/physiology , Longevity/genetics , Longevity/physiology , Malates/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Motor Activity/genetics , Motor Activity/physiology , Pyridines/pharmacology , Symporters/deficiency
6.
Neurobiol Dis ; 143: 105018, 2020 09.
Article in English | MEDLINE | ID: mdl-32682952

ABSTRACT

In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.


Subject(s)
Brain/metabolism , Citric Acid/metabolism , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/metabolism , Hippocampus/physiopathology , Seizures/metabolism , Symporters/genetics , Symporters/metabolism , Animals , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/metabolism , Female , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Nerve Net/physiopathology , Neurons/metabolism , Seizures/genetics
7.
Article in English | MEDLINE | ID: mdl-32043179

ABSTRACT

The published online version contains mistake in the author list for the author "Nermeen N. El-Agroudy" was incorrectly presented.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 739-748, 2020 04.
Article in English | MEDLINE | ID: mdl-31853613

ABSTRACT

This study was performed to examine whether clindamycin could protect against doxorubicin (DOX)-induced acute nephrotoxicity, and if so, what molecular mechanisms responsible for this protective effect. Male albino rats were pretreated with clindamycin once per day for 5 consecutive days at a dose of 300 mg/kg, i.p, then received a single dose of DOX (15 mg/kg; i.p) on the 5th day. DOX-induced marked renal injury as indicated by the presence of inflammatory cell infiltration, congestion, and edema accompanied by elevation in serum levels of creatinine and urea. These effects were alleviated by clindamycin pretreatment. DOX caused glutathione depletion and reduction in level of the antioxidant enzyme, catalase. Pretreatment with clindamycin markedly prohibited DOX-induced oxidative damage in renal tissue. Moreover, DOX provoked inflammatory responses in renal tissues as confirmed by increased expressions of NF-κB and COX-2 which were significantly reduced by clindamycin pretreatment. Besides, DOX-triggered apoptotic cascades in renal tissues as evidenced by elevated expression of pro-apoptotic proteins; Bax and cytochrome c, enhancing activity of caspase-3 enzyme whereas reducing the expression of anti-apoptotic Bcl-2 protein. Clindamycin pretreatment counteracts these apoptotic effects of DOX. Summarily, our results provide an evidence for the first time that clindamycin has a potential protective action against DOX-induced acute nephrotoxicity through inhibiting oxidative stress, inflammatory cascades, and apoptotic tissue injury.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibiotics, Antineoplastic/adverse effects , Antioxidants/therapeutic use , Clindamycin/therapeutic use , Doxorubicin/adverse effects , Kidney Diseases/drug therapy , Animals , Apoptosis/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Rats, Sprague-Dawley
9.
Trends Endocrinol Metab ; 30(10): 701-709, 2019 10.
Article in English | MEDLINE | ID: mdl-31422872

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common liver disorder worldwide. Specifically, nonalcoholic steatohepatitis (NASH) and fibrosis pose an enormous burden for patients and health-care systems. In the absence of approved pharmacological therapies, effective lifestyle interventions for NAFLD, such as dietary strategies and exercise training, are currently the therapeutic strategies of choice. This review covers the influence of macronutrient quality and quantity (i.e., low-carbohydrate and high-protein diets), for successful reduction of intrahepatocellular lipids (IHL). Moreover, we discuss the effectiveness of different modalities of physical exercising with and without weight loss. These lifestyle modifications not only provide strategies to reduce IHL but may also hold a still underestimated potential to induce improvement and/or even remission of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease/therapy , Exercise/physiology , High-Intensity Interval Training , Humans , Weight Loss/physiology
10.
Br J Pharmacol ; 173(22): 3248-3260, 2016 11.
Article in English | MEDLINE | ID: mdl-27590029

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats were treated with either CCl4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α-SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF-κB, TNF-α, COX-2, IL-1ß), TGF-ß1 and Hh signalling markers (Ptch-1, Smo, Gli-2) were also assessed. KEY RESULTS: Hepatic fibrosis induced by CCl4 was significantly reduced by forskolin, as indicated by decreased α-SMA expression and collagen deposition. Forskolin co-treatment significantly attenuated oxidative stress and inflammation, reduced TGF-ß1 levels and down-regulated mRNA expression of Ptch-1, Smo and Gli-2 through cAMP-dependent PKA activation. CONCLUSION AND IMPLICATIONS: In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti-inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP-dependent activation of PKA.


Subject(s)
Carbon Tetrachloride/antagonists & inhibitors , Colforsin/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Animals , Colforsin/administration & dosage , Hedgehog Proteins/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...