Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(7): e0288622, 2023.
Article in English | MEDLINE | ID: mdl-37463144

ABSTRACT

Phosphatase and tensin homolog (PTEN) mutation is common in prostate cancer during progression to metastatic and castration resistant forms. We previously reported that loss of PTEN function in prostate cancer leads to increased expression and secretion of the Prorenin Receptor (PRR) and its soluble processed form, the soluble Prorenin Receptor (sPRR). PRR is an essential factor required for proper assembly and activity of the vacuolar-ATPase (V-ATPase). The V-ATPase is a rotary proton pump required for the acidification of intracellular vesicles including endosomes and lysosomes. Acidic vesicles are involved in a wide range of cancer related pathways such as receptor mediated endocytosis, autophagy, and cell signalling. Full-length PRR is cleaved at a conserved consensus motif (R-X-X-R↓) by a member of the proprotein convertase family to generate sPRR, and a smaller C-terminal fragment, designated M8.9. It is unclear which convertase processes PRR in prostate cancer cells and how processing affects V-ATPase activity. In the current study we show that PRR is predominantly cleaved by PACE4, a proprotein convertase that has been previously implicated in prostate cancer. We further demonstrate that PTEN controls PRR processing in mouse tissue and controls PACE4 expression in prostate cancer cells. Furthermore, we demonstrate that PACE4 cleavage of PRR is needed for efficient V-ATPase activity and prostate cancer cell growth. Overall, our data highlight the importance of PACE4-mediated PRR processing in normal physiology and prostate cancer tumorigenesis.


Subject(s)
Prostatic Neoplasms , Vacuolar Proton-Translocating ATPases , Animals , Humans , Male , Mice , Proprotein Convertases/metabolism , Prorenin Receptor , Prostatic Neoplasms/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
2.
Cell Rep ; 33(1): 108230, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027666

ABSTRACT

mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.


Subject(s)
Mitosis/genetics , TOR Serine-Threonine Kinases/metabolism , HeLa Cells , Humans , Treatment Outcome
3.
Mol Cancer Res ; 18(10): 1477-1490, 2020 10.
Article in English | MEDLINE | ID: mdl-32587106

ABSTRACT

PTEN loss-of-function contributes to hyperactivation of the PI3K pathway and to drug resistance in breast cancer. Unchecked PI3K pathway signaling increases activation of the mechanistic target of rapamycin complex 1 (mTORC1), which promotes tumorigenicity. Several studies have suggested that vacuolar (H+)-ATPase (V-ATPase) complex activity is regulated by PI3K signaling. In this study, we showed that loss of PTEN elevated V-ATPase activity. Enhanced V-ATPase activity was mediated by increased expression of the ATPase H+ transporting accessory protein 2 (ATP6AP2), also known as the prorenin receptor (PRR). PRR is cleaved into a secreted extracellular fragment (sPRR) and an intracellular fragment (M8.9) that remains associated with the V-ATPase complex. Reduced PTEN expression increased V-ATPase complex activity in a PRR-dependent manner. Breast cancer cell lines with reduced PTEN expression demonstrated increased PRR expression. Similarly, PRR expression became elevated upon PTEN deletion in a mouse model of breast cancer. Interestingly, concentration of sPRR was elevated in the plasma of patients with breast cancer and correlated with tumor burden in HER2-enriched cancers. Moreover, PRR was essential for proper HER2 receptor expression, localization, and signaling. PRR knockdown attenuated HER2 signaling and resulted in reduced Akt and ERK 1/2 phosphorylation, and in lower mTORC1 activity. Overall, our study demonstrates a mechanism by which PTEN loss in breast cancer can potentiate multiple signaling pathways through upregulation of the V-ATPase complex. IMPLICATIONS: Our study contributed to the understanding of the role of the V-ATPase complex in breast cancer cell tumorigenesis and provided a potential biomarker in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Oncogenes/genetics , PTEN Phosphohydrolase/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Signal Transduction , Transfection
4.
Oncotarget ; 10(48): 4923-4936, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31452834

ABSTRACT

Phosphatase and tensin homolog (PTEN) tumor suppressor protein loss is common in prostate cancer (PCa). PTEN loss increases PI3K/Akt signaling, which promotes cell growth and survival. To find secreted biomarkers of PTEN loss, a proteomic screen was used to compare secretomes of cells with and without PTEN expression. We showed that PTEN downregulates Prorenin Receptor (PRR) expression and secretion of soluble Prorenin Receptor (sPRR) in PCa cells and in mouse. PRR is an accessory protein required for assembly of the vacuolar ATPase (V-ATPase) complex. V-ATPase is required for lysosomal acidification, amino acid sensing, efficient mechanistic target of Rapamycin complex 1 (mTORC1) activation, and ß-Catenin signaling. On PCa tissue microarrays, PRR expression displayed a positive correlation with Akt phosphorylation. Moreover, PRR expression was required for proliferation of PCa cells by maintaining V-ATPase function. Further, we provided evidence for a potential clinical role for PRR expression and sPRR concentration in differentiating low from high Gleason grade PCa. Overall, the current study unveils a mechanism by which PTEN can inhibit tumor growth. Lower levels of PRR result in attenuated V-ATPase activity and reduced PCa cell proliferation.

5.
Oncotarget ; 6(29): 28282-95, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26318046

ABSTRACT

The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.


Subject(s)
Cell Cycle Proteins/metabolism , Lipase/metabolism , Triglycerides/metabolism , Tumor Suppressor Proteins/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Blotting, Western , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Lipase/antagonists & inhibitors , Lipase/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Phenylurea Compounds/pharmacology , Protein Binding , RNA Interference , Tretinoin/pharmacology , Tumor Suppressor Proteins/genetics
6.
Diabetologia ; 58(1): 149-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25381555

ABSTRACT

AIMS/HYPOTHESIS: Obesity is a global epidemic resulting from increased energy intake, which alters energy homeostasis and results in an imbalance in fat storage and breakdown. G0/G1 switch gene 2 (G0s2) has been recently characterised in vitro as an inhibitor of adipose triglyceride lipase (ATGL), the rate-limiting step in fat catabolism. In the current study we aim to functionally characterise G0s2 within the physiological context of a mouse model. METHODS: We generated a mouse model in which G0s2 was deleted. The homozygous G0s2 knockout (G0s2 (-/-)) mice were studied over a period of 22 weeks. Metabolic variables were measured including body weight and body composition, food intake, glucose and insulin tolerance tests, energy metabolism and thermogenesis. RESULTS: We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo. G0s2 (-/-) mice are lean, resistant to weight gain induced by a high-fat diet and are glucose tolerant and insulin sensitive. The white adipose tissue of G0s2 (-/-) mice has enhanced lipase activity and adipocytes showed enhanced stimulated lipolysis. Energy metabolism in the G0s2 (-/-) mice is shifted towards enhanced lipid metabolism and increased thermogenesis. G0s2 (-/-) mice showed enhanced cold tolerance and increased expression of thermoregulatory and oxidation genes within white adipose tissue, suggesting enhanced 'browning' of the white adipose tissue. CONCLUSIONS/INTERPRETATION: Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.


Subject(s)
Adipocytes, Brown/physiology , Adipose Tissue, White/physiology , Cell Cycle Proteins/genetics , Cell Transdifferentiation/genetics , Diet, High-Fat , Insulin Resistance/genetics , Weight Gain/genetics , Adiposity/genetics , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Female , Gene Deletion , Male , Mice , Mice, Knockout , Thermogenesis/genetics
7.
Cancer Res ; 72(5): 1270-9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22253229

ABSTRACT

Several types of collagen contain cryptic antiangiogenic noncollagenous domains that are released upon proteolysis of extracellular matrix (ECM). Among those is Arresten, a collagen-derived antiangiogenic factor (CDAF) that is processed from α1 collagen IV. However, the conditions under which Arresten is released from collagen IV in vivo or whether the protein functions in tumor suppressor pathways remain unknown. Here, we show that p53 induces the expression of α1 collagen IV and release of Arresten-containing fragments from the ECM. Comparison of the transcriptional activation of COL4A1 with other CDAF-containing genes revealed that COL4A1 is a major antiangiogenic gene induced by p53 in human adenocarinoma cells. p53 directly activated transcription of the COL4A1 gene by binding to an enhancer region 26 kbp downstream of its 3' end. p53 also stabilized the expression of full-length α1 collagen IV by upregulation of α(II) prolyl-hydroxylase and increased the release of Arresten in the ECM through a matrix metalloproteinase (MMP)-dependent mechanism. The resulting upregulation of α1 collagen IV and production of Arresten by the tumor cells significantly inhibited angiogenesis and limited tumor growth in vivo. Furthermore, we show that immunostaining of Arresten correlated with p53 status in human prostate cancer specimens. Our findings, therefore, link the production of Arresten to the p53 tumor suppressor pathway and show a novel mechanism through which p53 can inhibit angiogenesis.


Subject(s)
Adenocarcinoma/metabolism , Angiogenesis Inhibitors/genetics , Collagen Type IV/genetics , Prostatic Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Line, Tumor , Collagen Type IV/metabolism , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Transcriptional Activation , Up-Regulation
8.
Endocrinology ; 151(7): 3061-73, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20444946

ABSTRACT

Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.


Subject(s)
Ceramides/metabolism , Cholesterol/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Acetyltransferases/genetics , Acetyltransferases/physiology , Animals , Apoptosis/drug effects , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Lipid Metabolism/drug effects , Mitochondria/drug effects , Models, Biological , Nucleotidyltransferases/genetics , Nucleotidyltransferases/physiology , Oligonucleotide Array Sequence Analysis , Palmitates/pharmacology , RNA Interference , Rats
9.
Cancer Res ; 69(17): 6782-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19706769

ABSTRACT

The Bcl-2 family of proteins consists of both antiapoptotic and proapoptotic factors, which share sequence homology within conserved regions known as Bcl-2 homology domains. Interactions between Bcl-2 family members, as well as with other proteins, regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c. Here we identify a novel regulator of apoptosis that lacks Bcl-2 homology domains but acts by binding Bcl-2 and modulating its antiapoptotic activity. To identify regulators of apoptosis, we performed expression profiling in human primary fibroblasts treated with tumor necrosis factor-alpha (TNF-alpha), a potent inflammatory cytokine that can regulate apoptosis and functions, at least in part, by inducing expression of specific genes through NF-kappaB. We found that the gene undergoing maximal transcriptional induction following TNF-alpha treatment was G(0)-G(1) switch gene 2 (G0S2), the activation of which also required NF-kappaB. We show that G0S2 encodes a mitochondrial protein that specifically interacts with Bcl-2 and promotes apoptosis by preventing the formation of protective Bcl-2/Bax heterodimers. We further show that ectopic expression of G0S2 induces apoptosis in diverse human cancer cell lines in which endogenous G0S2 is normally epigenetically silenced. Our results reveal a novel proapoptotic factor that is induced by TNF-alpha through NF-kappaB and that interacts with and antagonizes Bcl-2.


Subject(s)
Apoptosis/physiology , Cell Cycle Proteins/metabolism , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Line, Tumor , Fibroblasts/metabolism , Fibroblasts/pathology , HeLa Cells , Humans , Mitochondrial Proteins/genetics , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/pharmacology , bcl-2-Associated X Protein/metabolism
10.
J Immunol ; 173(5): 3193-200, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15322180

ABSTRACT

The role of the sphingolipid ceramide in modulating the immune response has been controversial, in part because of conflicting data regarding its ability to regulate the transcription factor NF-kappaB. To help clarify this role, we investigated the effects of ceramide on IL-2, a central NF-kappaB target. We found that ceramide inhibited protein kinase C (PKC)-mediated activation of NF-kappaB. Ceramide was found to significantly reduce the kinase activity of PKCtheta as well as PKCalpha, the critical PKC isozymes involved in TCR-induced NF-kappaB activation. This was followed by strong inhibition of IL-2 production in both Jurkat T leukemia and primary T cells. Exogenous sphingomyelinase, which generates ceramide at the cell membrane, also inhibited IL-2 production. As expected, the repression of NF-kappaB activation by ceramide led to the reduction of transcription of the IL-2 gene in a dose-dependent manner. Inhibition of IL-2 production by ceramide was partially overcome when NF-kappaB nuclear translocation was reconstituted with activation of a PKC-independent pathway by TNF-alpha or when PKCtheta was overexpressed. Importantly, neither the conversion of ceramide to complex glycosphingolipids, which are known to have immunosuppressive effects, nor its hydrolysis to sphingosine, a known inhibitor of PKC, was necessary for its inhibitory activity. These results indicate that ceramide plays a negative regulatory role in the activation of NF-kappaB and its targets as a result of inhibition of PKC.


Subject(s)
Ceramides/metabolism , Interleukin-2/biosynthesis , Isoenzymes/metabolism , NF-kappa B/metabolism , Protein Kinase C/metabolism , Receptors, Tumor Necrosis Factor , Down-Regulation , Humans , Interleukin-2/genetics , Isoenzymes/antagonists & inhibitors , Jurkat Cells , Protein Kinase C/antagonists & inhibitors , Protein Kinase C-alpha , Protein Kinase C-theta , Proteins/metabolism , RNA, Messenger/metabolism , Time Factors , Tumor Necrosis Factor-alpha , fas Receptor
11.
Biochem J ; 376(Pt 3): 725-32, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-12967322

ABSTRACT

The tumour suppressor p53 induces cell death by launching several pathways that are either dependent on or independent of gene transcription. Accumulation of the sphingolipid ceramide and reactive oxygen species are among these pathways. Crossregulation of these two pathways is possible owing to the demonstrated inhibition of neutral sphingomyelinase by glutathione, the predominant cellular antioxidant, and has been observed in some cytokine-dependent cell-death models. In a model of irradiation-induced cell death of Molt-4 leukaemia cells, it was found that ceramide accumulation and glutathione depletion were dependent on p53 up-regulation. The loss of p53 owing to expression of the papilloma virus E6 protein inhibited both pathways after irradiation. However, in this model, these two pathways appeared to be independently regulated on the basis of the following observations: (1) glutathione supplementation or depletion did not alter irradiation-induced ceramide accumulation, (2) exogenous ceramide treatment did not induce glutathione depletion, (3) glutathione depletion was dependent on new protein synthesis, whereas ceramide accumulation was independent of it and (4) caspase activation was required for ceramide accumulation but not for glutathione depletion. Furthermore, caspase 9 activation, which is dependent on the release of mitochondrial cytochrome c, was not required for ceramide accumulation. This suggested that a caspase, other than caspase 9, was necessary for ceramide accumulation. Interestingly, Bcl-2 expression inhibited these pathways, indicating a possible role for mitochondria in regulating both pathways. These findings indicate that these two pathways exhibit cross-regulation in cytokine-dependent, but not in p53-dependent, cell-death models.


Subject(s)
Apoptosis , Ceramides/metabolism , Glutathione/metabolism , Leukemia/metabolism , Tumor Suppressor Protein p53/metabolism , Caspase 9 , Caspases/metabolism , Cell Line, Tumor , Ceramides/pharmacology , Gamma Rays , Glutathione/pharmacology , Humans , Kinetics , Leukemia/pathology , Signal Transduction
12.
Endocrinology ; 144(9): 4154-63, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12933690

ABSTRACT

We have proposed the "glucolipotoxicity" hypothesis in which elevated free fatty acids (FFAs) together with hyperglycemia are synergistic in causing islet beta-cell damage because high glucose inhibits fat oxidation and consequently lipid detoxification. The effects of 1-2 d culture of both rat INS 832/13 cells and human islet beta-cells were investigated in medium containing glucose (5, 11, 20 mM) in the presence or absence of various FFAs. A marked synergistic effect of elevated concentrations of glucose and saturated FFA (palmitate and stearate) on inducing beta-cell death by apoptosis was found in both INS 832/13 and human islet beta-cells. In comparison, linoleate (polyunsaturated) synergized only modestly with high glucose, whereas oleate (monounsaturated) was not toxic. Treating cells with the acyl-coenzyme A synthase inhibitor triacsin C, or the AMP kinase activators metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside that redirect lipid partitioning to oxidation, curtailed glucolipotoxicity. In contrast, the fat oxidation inhibitor etomoxir, like glucose, markedly enhanced palmitate-induced cell death. The data indicate that FFAs must be metabolized to long chain fatty acyl-CoA to exert toxicity, the effect of which can be reduced by activating fatty acid oxidation. The results support the glucolipotoxicity hypothesis of beta-cell failure proposing that elevated FFAs are particularly toxic in the context of hyperglycemia.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Apoptosis/drug effects , Fatty Acids/toxicity , Glucose/toxicity , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Aminoimidazole Carboxamide/pharmacology , Caspase 3 , Caspases/metabolism , Cells, Cultured , Drug Synergism , Humans , Hypoglycemic Agents/pharmacology , Islets of Langerhans/enzymology , Metformin/pharmacology , Mitochondria/metabolism , Oleic Acid/toxicity , Oxidation-Reduction , Palmitates/pharmacokinetics , Palmitates/toxicity , Ribonucleotides/pharmacology , Stearates/toxicity
13.
J Biol Chem ; 278(34): 31861-70, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-12805375

ABSTRACT

Little is known about the biochemical basis of the action of free fatty acids (FFA) on breast cancer cell proliferation and apoptosis. Here we report that unsaturated FFAs stimulated the proliferation of human MDA-MB-231 breast cancer cells, whereas saturated FFAs inhibited it and caused apoptosis. Saturated FFA palmitate decreased the mitochondrial membrane potential and caused cytochrome c release. Palmitate-induced apoptosis was enhanced by the fat oxidation inhibitor etomoxir, whereas it was reduced by fatty-acyl CoA synthase inhibitor triacsin C. The non-metabolizable analog 2-bromopalmitate was not cytotoxic. This indicates that palmitate must be metabolized to exert its toxic effect but that its action does not involve fat oxidation. Pharmacological studies showed that the action of palmitate is not mediated via ceramides, reactive oxygen species, or changes in phosphatidylinositol 3-kinase activity. Palmitate caused early enhancement of cardiolipin turnover and decreased the levels of this mitochondrial phospholipid, which is necessary for cytochrome c retention. Cosupplementation of oleate, or increasing beta-oxidation with the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside, both restored cardiolipin levels and blocked palmitate-induced apoptosis. Oleate was preferentially metabolized to triglycerides, and oleate cosupplementation channeled palmitate esterification processes to triglycerides. Overexpression of Bcl-2 family members blocked palmitate-induced apoptosis. The results provide evidence that a decrease in cardiolipin levels and altered mitochondrial function are involved in palmitate-induced breast cancer cell death. They also suggest that the antiapoptotic action of oleate on palmitate-induced cell death involves both restoration of cardiolipin levels and redirection of palmitate esterification processes to triglycerides.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Fatty Acids/pharmacology , Cell Division/drug effects , Humans , Lipid Metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Cells, Cultured
14.
Diabetes ; 51 Suppl 3: S405-13, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12475783

ABSTRACT

Beta-cells possess inherent mechanisms to adapt to overnutrition and the prevailing concentrations of glucose, fatty acids, and other fuels to maintain glucose homeostasis. However, this is balanced by potentially harmful actions of the same nutrients. Both glucose and fatty acids may cause good/adaptive or evil/toxic actions on the beta-cell, depending on their concentrations and the time during which they are elevated. Chronic high glucose dramatically influences beta-cell lipid metabolism via substrate availability, changes in the activity and expression of enzymes of glucose and lipid metabolism, and modifications in the expression level of key transcription factors. We discuss here the emerging view that beta-cell "glucotoxicity" is in part indirectly caused by "lipotoxicity," and that beta-cell abnormalities will become particularly apparent when both glucose and circulating fatty acids are high. We support the concept that elevated glucose and fatty acids synergize in causing toxicity in islets and other organs, a process that may be instrumental in the pleiotropic defects associated with the metabolic syndrome and type 1 and type 2 diabetes. The mechanisms by which hyperglycemia and hyperlipidemia alter insulin secretion are discussed and a model of beta-cell "glucolipotoxicity" that implicates alterations in beta-cell malonyl-CoA concentrations; peroxisome proliferator-activated receptor-alpha and -gamma and sterol regulatory element binding protein-1c expression; and lipid partitioning is proposed.


Subject(s)
Diabetes Mellitus/etiology , Glucose/metabolism , Islets of Langerhans/physiology , Lipid Metabolism , Malonyl Coenzyme A/physiology , Signal Transduction/physiology , Adaptation, Physiological/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...