Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Sci Rep ; 14(1): 10025, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693137

ABSTRACT

The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (Rf) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 µg/band, 0.2-4.5 µg/band and 0.1-3.0 µg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/blood , SARS-CoV-2/drug effects , COVID-19/blood , Chromatography, Thin Layer/methods , Cost-Benefit Analysis , Alanine/blood , Linezolid/blood
2.
J Chromatogr A ; 1619: 460945, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32057445

ABSTRACT

A new platform was developed for determination of drugs in plasma without extraction or instrumental analysis just using TLC, smart phone digital camera and free image processing software. Lamotrigine, antiepileptic drug was used as model analyte. The proposed platform depends on using oil-in-water (O/W) microemulsion to isolate the drug from plasma proteins and using water-in-oil (W/O) microemulsion as mobile phase for TLC which results in complete separation between lamotrigine and plasma as viewed under UV lamp. The composition of both microemulsions was optimized using Taguchi orthogonal array and Plackett- Burman design. The optimal (O/W) microemulsion predicted composition was 0.01 mL Butyl acetate, 4 mL butanol, 0.925 gm SDS and 8.6 mL water while the (W/O) mobile phase microemulsion was 9 mL Butyl acetate, 1 mL butanol, 0.25 gm SDS, 0.25 mL water. Separation was carried out on a silica gel 60F-254 plate eluted with the (W/O) microemulsion in about 30 min development time. The images of TLC plates were processed using 4 different programs, by comparing their results it was found that "integrated density" measured by Fiji software was the most accurate response that could measure the concentration of lamotrigine in spiked plasma in the range of (20-200) ng/spot. This method was applied also for determination of lamotrigine in lamictal® tablet dosage form using the same mobile phase. The precision of the method was satisfactory; the maximum value of relative standard deviations did not exceed 1.5%. While the accuracy was proved by the low values of % error and high values of recovery.


Subject(s)
Blood Chemical Analysis/methods , Chromatography, Thin Layer , Image Processing, Computer-Assisted , Smartphone , Anticonvulsants , Blood Chemical Analysis/instrumentation , Emulsions/chemistry , Humans , Lamotrigine/analysis , Plasma/chemistry , Software
3.
Luminescence ; 29(5): 462-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23996979

ABSTRACT

A new, specific and sensitive reversed-phase high-performance liquid chromatography method was developed for the simultaneous determination of metolazone (MET) and losartan potassium (LOS). Good chromatographic separation was achieved within 6.0 min on a 150 × 4.6 mm i.d., 5 µm Waters, Ireland and ProDIGY 5 ODS 3 100 A column. A mobile phase containing a mixture of methanol and 0.02 M phosphate buffer (65:35, v/v) at pH 3.0 was used. The analysis was performed at a flow rate of 1 mL/min with fluorescence detection at 410 nm after excitation at 230 nm. Aspirin (ASP) was used as an internal standard. The proposed method was rectilinear over 2.0-40.0 (MET) and 40.0-800.0 ng/mL (LOS), with limits of detection of 0.22 and 4.52 ng/mL and limits of quantification of 0.68 and 13.70 ng/mL for MET and LOS, respectively. The method was successfully applied for the simultaneous analysis of the studied drugs in their laboratory-prepared mixtures, single tablets and co-formulated tablets. Moreover, the method was applied to an in vitro drug release (dissolution) test. The method was further extended to the determination of LOS in spiked human plasma. Statistical evaluation and comparison of data obtained using the proposed and comparison methods revealed no significant difference between the two methods in addition to good accuracy and precision for the proposed method.


Subject(s)
Antihypertensive Agents/blood , Chromatography, High Pressure Liquid/methods , Diuretics/blood , Fluorometry/methods , Losartan/blood , Metolazone/blood , Chromatography, High Pressure Liquid/instrumentation , Drug Combinations , Humans , Tablets/analysis
4.
Chem Cent J ; 7(1): 162, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24079576

ABSTRACT

BACKGROUND: Levofloxacin hemihydrate (LEV) and ambroxol HCl (AMB) are available for the treatment of upper and lower respiratory tract infections. A survey of the literature reveals that two reversed phase HPLC methods were e reported for the simultaneous determination of LEV and AMB in pharmaceutical preparations. However the reported methods suffers from the low sensitivity, no application of the method in the combined tablets and no application to biological fluids. Also the toxic effects of the used solvents which are harmful to human beings. For this reason, our target was to develop a simple sensitive, less hazardous micellar HPLC method for the simultaneous determination of LEV and AMB in their combined dosage forms and plasma. RESULTS: The method showed good linearity over the ranges of 1-44 µg/mL and 1-20 µg/mL with limits of detection 0.26 and 0.07 µg/mL and limits of quantification 0.80 and 0.20 µg/mL for LEV and AMB, respectively. The method was further extended to the determination of LEV in spiked human plasma with mean percentage recoveries of 100.10% ± 1.14 as well as determination of LEV in real human plasma without prior extraction. Statistical evaluation of the data was performed according to ICH Guidelines. CONCLUSION: The suggested method was successfully applied for the simultaneous analysis of the studied drugs in their co-formulated tablets and human plasma. The mean percentage recoveries in combined tablets were 100.20 ± 1.64 and 100.72 ± 1.11 for LEV and AMB, respectively and 100.10 ± 1.14 for LEV in spiked human plasma. Statistical comparison of the results with those of the comparison method revealed good agreement and proved that there were no significant difference in the accuracy and precision between the two methods respectively.

5.
Chem Cent J ; 6: 13, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22333299

ABSTRACT

A new simple, rapid and sensitive reversed-phase liquid chromatographic method was developed and validated for the simultaneous determination of sulpiride (SUL) and mebeverine Hydrochloride (MEB) in the presence of their impurities and degradation products. The separation of these compounds was achieved within 6 min on a 250 mm, 4.6 mm i.d., 5 m particle size Waters®-C18 column using isocractic mobile phase containing a mixture of acetonitrile and 0.01 M dihydrogenphosphate buffer (45:55) at pH = 4.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence-detection at excitation 300 nm and emission at 365 nm. The concentration-response relationship was linear over a concentration range of 10- 100 ng/mL for both MEB and SUL with a limit of detection 0.73 ng/mL and 0.85 ng/mL for MEB and SUL respectively. The proposed method was successfully applied for the analysis of both MEB and SUL in bulk with average recoveries of 100.22 ± 0.757% and 99.96 ± 0.625% respectively, and in commercial tablets with average recoveries of 100.04 ± 0.93% and 100.03 ± 0.376% for MEB and SUL respectively. The proposed method was successfully applied to the determination of MEB metabolite (veratic acid) in real plasma simultaneously with SUL. The mean% recoveries (n = 3) for both MEB metabolite (veratic acid) and SUL were 100.36 ± 2.92 and 99.06 ± 2.11 for spiked human plasma respectively. For real human plasma, the mean% recoveries (n = 3) were and respectively.

6.
Chem Cent J ; 6(1): 9, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22277722

ABSTRACT

BACKGROUND: Rosiglitazone (ROZ) and glimepiride (GLM) are antidiabetic agents used in the treatment of type 2 diabetes mellitus. A survey of the literature reveals that only one spectrophotometric method has been reported for the simultaneous determination of ROS and GLM in pharmaceutical preparations. However the reported method suffers from the low sensitivity, for this reason, our target was to develop a simple sensitive HPLC method for the simultaneous determination of ROZ and GLM in their combined dosage forms and plasma. RESULTS: A simple reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of Rosiglitazone (ROS) and Glimepiride (GLM) in combined dosage forms and human plasma. The separation was achieved using a 150 mm × 4.6 mm i.d., 5 µm particle size Symmetry® C18 column. Mobile phase containing a mixture of acetonitrile and 0.02 M phosphate buffer of pH 5 (60: 40, V/V) was pumped at a flow rate of 1 mL/min. UV detection was performed at 235 nm using nicardipine as an internal standard. The method was validated for accuracy, precision, specificity, linearity, and sensitivity. The developed and validated method was successfully used for quantitative analysis of Avandaryl™ tablets. The chromatographic analysis time was approximately 7 min per sample with complete resolution of ROS (tR = 3.7 min.), GLM (tR = 4.66 min.), and nicardipine (tR, 6.37 min). Validation studieswas performed according to ICH Guidelines revealed that the proposed method is specific, rapid, reliable and reproducible. The calibration plots were linear over the concentration ranges 0.10-25 µg/mL and 0.125-12.5 µg/mL with LOD of 0.04 µg/mL for both compounds and limits of quantification 0.13 and 0.11 µg/mL for ROS and GLM respectively. CONCLUSION: The suggested method was successfully applied for the simultaneous analysis of the studied drugs in their co-formulated tablets and human plasma. The mean percentage recoveries in Avandaryl™ tablets were 100.88 ± 1.14 and 100.31 ± 1.93 for ROS and GLM respectively. Statistical comparison of the results with those of the reference method revealed good agreement and proved that there were no significant difference in the accuracy and precision between the two methods respectively. The interference likely to be introduced from some co-administered drugs such as glibenclamide, gliclazide, metformine, pioglitazone and nateglinide was investigated.

7.
Chem Cent J ; 5(1): 70, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22059735

ABSTRACT

A rapid, simple and sensitive synchronous specrtofluorimetric method has been developed for the simultaneous analysis of binary mixture of metoprolol (MTP) and felodipine (FDP). The method is based upon measurement of the synchronous fluorescence intensity of the two drugs at Δλ of 70 nm in aqueous solution. The different experimental parameters affecting the synchronous fluorescence intensities of the two drugs were carefully studied and optimized. The fluorescence intensity-concentration plots were rectilinear over the ranges of 0.5-10 µg/mL and 0.2-2 µg/mL for MTP and FDP, respectively. The limits of detection were 0.11 and 0.02 µg/mL and quantification limits were 0.32 and 0.06 µg/mL for MTP and FDP, respectively. The proposed method was successfully applied for the determination of the two compounds in their commercial tablets and the results obtained were favorably compared to those obtained with a comparison method.

8.
Chem Cent J ; 5: 65, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-22032335

ABSTRACT

A new spectrophotometric method is developed for the determination of phenylpropanolamine HCl (PPA), ephedrine HCl (EPH) and pseudoephedrine HCl (PSE) in pharmaceutical preparations and spiked human urine. The method involved heat-catalyzed derivatization of the three drugs with 2,4-dinitrofluorobenzene (DNFB) producing a yellow colored product peaking at 370 nm for PPA and 380 nm for EPH and PSE, respectively.The absorbance concentration plots were rectilinear over the range of 2-20 for PPA and 1-14 µg/mL for both of EPH and PSE, respectively. The limit of detection (LOD) values were 0.20, 0.13 and 0.20 µg/mL for PPA, EPH and PSE, respectively and limit of quantitation (LOQ) values of 0.60 and 0.40 and 0.59 µg/mL for PPA, EPH and PSE, respectively. The analytical performance of the method was fully validated and the results were satisfactory. The proposed method was successfully applied to the determination of the three studied drugs in their commercial dosage forms including tablets, capsules and ampoules with good percentage recoveries. The proposed method was further applied for the determination of PSE in spiked human urine with a mean percentage recovery of 108.17 ± 1.60 for (n = 3). Statistical comparison of the results obtained with those of the comparison methods showed good agreement and proved that there was no significant difference in the accuracy and precision between the two methods. The mechanism of the reaction pathway was postulated.

9.
Chem Cent J ; 5(1): 61, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21996025

ABSTRACT

BACKGROUND: Sertraline is a well known antidepressant drug which belongs to a class called selective serotonin reuptake inhibitor. Most published methods do not enable studying the stability of this drug in different stress conditions. RESULTS: Two new methods were developed for the determination of sertraline (SER). Both methods are based on coupling with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.8 and measuring the reaction product spectrophotometrically at 395 nm (Method I) or spectrofluorimetrically at 530 nm upon excitation at 480 nm (Method II). The response-concentration plots were rectilinear over the range 2-24 µg/mL and 0.25-5 µg/mL for methods I and II respectively with LOD of 0.18 µg/mL and 0.07 µg/mL, and LOQ of 0.56 µg/mL and 0.21 µg/mL for methods I and II, respectively. CONCLUSION: Both methods were applied to the analysis of commercial tablets and the results were in good agreement with those obtained using a reference method. The fluorimetric method was further applied to the in vivo determination of SER in human plasma. A proposal of the reaction pathway was presented. The spectrophotometric method was extended to stability study of SER. The drug was exposed to alkaline, acidic, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of oxidative degradation of the drug. The apparent first order rate constant and t1/2 of the degradation reaction were determined.

10.
Chem Cent J ; 5: 56, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21978386

ABSTRACT

BACKGROUND: Sertraline is primarily used to treat major depression in adult outpatients as well as obsessive-compulsive, panic and social anxiety disorders in both adults and children. A survey of the literature reveals that most of the reported methods are either insufficiently sensitive or tedious and require highly sophisticated and dedicated instrumentation. The proposed method is considered to be specific for determination of SER in presence of its metabolite (deaminated form). RESULTS: A sensitive, simple and specific spectrofluorimetric method was developed for the determination of sertraline (SER) in pharmaceutical formulations and biological fluids. The method is based on its reaction with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer of pH 8.0 to yield a highly fluorescent derivative peaking at 315 nm after excitation at 265 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence concentration plot was rectilinear over the range of 0.05-1.0 µg mL-1 with a lower detection limit of 5.34 × 10-3 µg mL-1 and limit of quantitation of 0.016 µg mL-1. CONCLUSIONS: The proposed method was successfully applied to the analysis of commercial tablets and the results obtained were in good agreement with those obtained using the reference method. Furthermore, the method was applied for the determination of SER in spiked and real human plasma. The mean % recovery (n = 3) was 94.33 ± 1.53 and 92.00 ± 2.65, respectively. A proposal of the reaction pathway was postulated.

11.
Chem Cent J ; 5(1): 36, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21711563

ABSTRACT

BACKGROUND: Pregabalin (PG) is an anticonvulsant, analgesic and anxiolytic drug. A survey of the literature reveals that all the reported spectrophotometric methods are either don't offer high sensitivity, need tedious extraction procedures, recommend the measurement of absorbance in the near UV region where interference most probably occurs and/or use non specific reagent that don't offer suitable linearity range. RESULTS: Two new sensitive and simple spectrophotometric methods were developed for determination of pregabalin (PG) in capsules. Method (I) is based on the reaction of PG with 1,2-naphthoquinone-4-sulphonate sodium (NQS), yielding an orange colored product that was measured at 473 nm. Method (II) is based on the reaction of the drug with 2,4-dinitrofluorobenzene (DNFB) producing a yellow product measured at 373 nm. The different experimental parameters affecting the development and stability of the reaction product in methods (I) and (II) were carefully studied and optimized. The absorbance-concentration plots were rectilinear over the concentration ranges of 2-25 and 0.5-8 µg mL-1 for methods (I) and (II) respectively. The lower detection limits (LOD) were 0.15 and 0.13 µg mL-1 and the lower quantitation limits (LOQ) were 0.46 and 0.4 µg mL-1 for methods (I) and (II) respectively. CONCLUSION: The developed methods were successfully applied to the analysis of the drug in its commercial capsules. The mean percentage recoveries of PG in its capsule were 99.11 ± 0.98 and 100.11 ± 1.2 (n = 3). Statistical analysis of the results revealed good agreement with those given by the comparison method. Proposals of the reaction pathways were postulated.

12.
J Fluoresc ; 20(2): 463-72, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19943095

ABSTRACT

A sensitive, simple and selective spectrofluorimetric method was developed for the determination of Lamotrigine (LMT) in pharmaceutical formulations and biological fluids. The method is based on reaction of LMT with o-phthalaldehyde in presence of 2-mercaptoethanol in borate buffer of pH 9.8 to yield a highly fluorescent derivative that is measured at 448 nm after excitation at 337 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence-concentration plot was rectilinear over the range of 0.1-1.0 microg ml(-1) with lower limit of detection (LOD) 0.02 microg ml(-1) and limit of quantification (LOQ) 0.06 microg ml(-1) respectively. The proposed method was successfully applied to the the analysis of commercial tablets. Statistical comparison of the results obtained by the proposed and reference method revealed no significant difference in the performance of the two methods regarding the accuracy and precision respectively. The proposed method was further extended to the in-vitro and in-vivo determination of the drug in spiked and real human plasma. The mean percentage recoveries in spiked and real human plasma (n = 3) were 95.78 +/- 1.37 and 90.93 +/- 2.34 respectively. Interference arising from co-administered drugs was also studied. A proposal for the reaction pathway with o-phthalaldehyde was postulated.


Subject(s)
Plasma/chemistry , Spectrometry, Fluorescence/methods , Tablets/chemistry , Triazines/analysis , Blood Chemical Analysis/methods , Child , Epilepsy/blood , Epilepsy/drug therapy , Fluorescence , Humans , Hydrogen-Ion Concentration , Lamotrigine , Linear Models , Male , Mercaptoethanol/chemistry , Models, Chemical , Reproducibility of Results , Sensitivity and Specificity , Time Factors , Triazines/chemistry , o-Phthalaldehyde/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...