Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 356(1): e2200417, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257809

ABSTRACT

New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24, which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50 ) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50 ) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 µM compared to methotrexate (MTX; IC50 = 0.08 µM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21, and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 µM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54. In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π-π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene-arene interaction. The obtained model and substitution pattern could be used for further development.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Molecular Structure , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism , Epidermal Growth Factor/pharmacology , Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Gefitinib/pharmacology , Drug Screening Assays, Antitumor , Cell Proliferation , Quinazolinones/pharmacology , Quinazolinones/chemistry , ErbB Receptors/metabolism , Cell Line, Tumor
2.
Bioorg Chem ; 80: 11-23, 2018 10.
Article in English | MEDLINE | ID: mdl-29864684

ABSTRACT

New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 µM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 µM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (23-25) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2',1':2,3]-thiazolo[4,5-d]pyridazine (43-54) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.


Subject(s)
Folic Acid Antagonists/chemical synthesis , Pyridazines/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protein Structure, Tertiary , Pyridazines/pharmacology , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism , Thiazoles/chemistry
3.
Bioorg Chem ; 74: 228-237, 2017 10.
Article in English | MEDLINE | ID: mdl-28865294

ABSTRACT

A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC50 of 0.06µM). Compound 4, 20 and 21 showed in vitro antitumor activity against a collection of cancer cell lines. Compound 26 proved lethal to HS 578T breast cancer cell line with IC50 value of 0.8µM, inducing cell cycle arrest and apoptosis. Molecular modeling studies concluded that recognition with key amino acids Phe 31 and Arg 22 is essential for DHFR binding. The obtained model could be useful for the development of new class of DHFR inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Folic Acid Antagonists/pharmacology , Pyridazines/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Humans , Models, Molecular , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
4.
Bioorg Chem ; 72: 282-292, 2017 06.
Article in English | MEDLINE | ID: mdl-28499189

ABSTRACT

A new series of 2-mercapto-quinazolin-4-one analogues was designed, synthesized and evaluated for their in vitro DHFR inhibition, antitumor and antimicrobial activity. Compound 17 proved to be the most active DHFR inhibitor with IC50 value of 0.01µM, eight fold more active than methotrexate (MTX). Compounds 16 and 24 showed antitumor activity against human Caco2 colon and MCF-7 breast tumor cell lines with IC50 values of 25.4 and 9.5µg/ml, respectively. Compounds 15, 20, 21 and 30 showed considerable activity against the Gram-positive bacteria Staphylococcus aureus while 24 and 30 proved active against Bacillus subtilis with a magnitude of potency comparable to the broad spectrum antibiotic Ciprofloxacin. Strong activity was observed for 13, 14, 19, 20 and 24 against Candida albicans and Aspergillus flavus. Compound 17 shared a similar molecular docking mode with MTX and made a critical hydrogen bond and arene-arene interactions via Ala9 and Phe34 amino acid residues, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Folic Acid Antagonists/pharmacology , Quinazolines/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Humans , Models, Molecular , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...