Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 250: 126239, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32088619

ABSTRACT

Melatonin and metal resistant microbes can enhance plant defense responses against various abiotic stresses, but little is known about the combined effects of melatonin and chromium (Cr) resistant microbes on reducing Cr toxicity in wheat (Triticum aestivum L.). In current study, we examined the effects of combined application of melatonin (0, 1, 2 mM) and Bacillus subtilis (with and without inoculation) on wheat physio-biochemical responses and Cr uptake under different levels of Cr (0, 25, 50 and 100 mg Cr kg-1 DM soil). Chromium stress decreased the wheat growth, biomass, chlorophyll and relative water contents by causing oxidative damage in the form of overproduction of electrolyte leakage, hydrogen peroxide and malondialdehyde. However, foliar application of melatonin enhanced the plant growth, biomass and photosynthesis by alleviating the oxidative damage and Cr accumulation by plants. Melatonin significantly increased the enzymatic and non-enzymatic antioxidant activities as compared with respective control. Inoculation with microbes further enhanced the positive impacts of melatonin on wheat growth and reduced the Cr uptake by plants. Compared with non-inoculation and melatonin treatment, the inoculation with B. subtilis increased cholorophyll a by 27%, cholorophyll b by 49%, ascorbic acid in leaves by 50% and soluble proteins by 72% in wheat grwon with 50 mg Cr kg-1 DM soil. The application of B. subtilis reduced oxidative stress and Cr toxicity by transforming the Cr6+ to Cr3+ in shoots and roots of wheat. Furthermore, B. subtilis reduced the Cr6+ uptake by wheat plants. The result of the present study revealed that the combined application of melatonin and B. subtilis might be a feasible approach aiming to reduce the Cr toxicity and its accumulation by wheat and probably in other plants.


Subject(s)
Chromium/metabolism , Melatonin/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Triticum/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Biomass , Chlorophyll/metabolism , Chromium/analysis , Chromium/toxicity , Malondialdehyde/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Front Plant Sci ; 10: 1537, 2019.
Article in English | MEDLINE | ID: mdl-31850029

ABSTRACT

The incorporation of nondestructive and cost-effective tools in genetic drought studies in combination with reliable indirect screening criteria that exhibit high heritability and genetic correlations will be critical for addressing the water deficit challenges of the agricultural sector under arid conditions and ensuring the success of genotype development. In this study, the proximal spectral reflectance data were exploited to assess three destructive agronomic parameters [dry weight (DW) and water content (WC) of the aboveground biomass and grain yield (GY)] in 30 recombinant F7 and F8 inbred lines (RILs) growing under full (FL) and limited (LM) irrigation regimes. The utility of different groups of spectral reflectance indices (SRIs) as an indirect assessment tool was tested based on heritability and genetic correlations. The performance of the SRIs and different models of partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) in estimating the destructive parameters was considered. Generally, all groups of SRIs, as well as different models of PLSR and SMLR, generated better estimations for destructive parameters under LM and combined FL+LM than under FL. Even though most of the SRIs exhibited a low association with destructive parameters under FL, they exhibited moderate to high genetic correlations and also had high heritability. The SRIs based on near-infrared (NIR)/visible (VIS) and NIR/NIR, especially those developed in this study, spectral band intervals extracted within VIS, red edge, and NIR spectral range, or individual effective wavelengths relevant to green, red, red edge, and middle NIR spectral region, were found to be more effective in estimating the destructive parameters under all conditions. Five models of SMLR and PLSR for each condition explained most of the variation in the three destructive parameters among genotypes. These models explained 42% to 46%, 19% to 30%, and 39% to 46% of the variation in DW, WC, and GY among genotypes under FL, 69% to 72%, 59% to 61%, and 77% to 81% under LM, and 71% to 75%, 61% to 71%, and 74% to 78% under FL+LM, respectively. Overall, these results confirmed that application of hyperspectral reflectance sensing in breeding programs is not only important for evaluating a sufficient number of genotypes in an expeditious and cost-effective manner but also could be exploited to develop indirect breeding traits that aid in accelerating the development of genotypes for application under adverse environmental conditions.

3.
Front Plant Sci ; 8: 435, 2017.
Article in English | MEDLINE | ID: mdl-28424718

ABSTRACT

Field-based trials are crucial for successfully achieving the goals of plant breeding programs aiming to screen and improve the salt tolerance of crop genotypes. In this study, simulated saline field growing conditions were designed using the subsurface water retention technique (SWRT) and three saline irrigation levels (control, 60, and 120 mM NaCl) to accurately appraise the suitability of a set of agro-physiological parameters including shoot biomass, grain yield, leaf water relations, gas exchange, chlorophyll fluorescence, and ion accumulation as screening criteria to establish the salt tolerance of the salt-tolerant (Sakha 93) and salt-sensitive (Sakha 61) wheat cultivars. Shoot dry weight and grain yield per hectare were substantially reduced by salinity, but the reduction was more pronounced in Sakha 61 than in Sakha 93. Increasing salinity stress caused a significant decrease in the net photosynthesis rate and stomatal conductance of both cultivars, although their leaf turgor pressure increased. The accumulation of toxic ions (Na+ and Cl-) was higher in Sakha 61, but the accumulation of essential cations (K+ and Ca2+) was higher in Sakha 93, which could be the reason for the observed maintenance of the higher leaf turgor of both cultivars in the salt treatments. The maximum quantum PSII photochemical efficiency (Fv/Fm) and the PSII quantum yield (ΦPSII) decreased with increasing salinity levels in Sakha 61, but they only started to decline at the moderate salinity condition in Sakha 93. The principle component analysis successfully identified the interrelationships between all parameters. The parameters of leaf water relations and toxic ion concentrations were significantly related to each other and could identify Sakha 61 at mild and moderate salinity levels, and, to a lesser extent, Sakha 93 at the moderate salinity level. Both cultivars under the control treatment and Sakha 93 at the mild salinity level were identified by most of the other parameters. The variability in the angle between the vectors of parameters explained which parameters could be used as individual, interchangeable, or supplementary screening criteria for evaluating wheat salt tolerance under simulated field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...