Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38699907

ABSTRACT

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Oxidative Stress , Pentacyclic Triterpenes , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , Pentacyclic Triterpenes/pharmacology , Rats , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Colon/metabolism , Lipid Peroxidation/drug effects , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Rats, Wistar
2.
Sleep Biol Rhythms ; 22(2): 181-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38524161

ABSTRACT

The aging process is characterized by circadian rhythm disruption, in physiology and behavior, which could result from weak entrainment. Light is the most potent cue that entrains the central circadian clock, which in turn synchronizes peripheral clocks in animal tissues. Period 2 (Per2) is one of the clock genes that respond to light. Moreover, oxidative stress could entrain the clock. Therefore, the present work aimed to investigate the role of light when applied late at night on the Per2, B cell lymphoma 2 (Bcl2) gene expression, and oxidative status in aged rats. Aged rats were divided into a control group and a group exposed to a 30-min light pulse applied daily during the subjective night at 5 am (ZT 22) for 4 weeks. Per2 and Bcl2 gene expression were quantified in liver tissue. To evaluate oxidative status, Glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) were estimated. The light pulse reduced the expression levels of Per2 and Bcl2 mRNA. Although it diminished the levels of malondialdehyde (MDA), nitric oxide (NO) levels were elevated and the glutathione (GSH) levels were declined. In conclusion, the light pulse late at night abolished Per2 mRNA circadian rhythm and reduced its expression in the liver of the aged rat. Similarly, it diminished the anti-apoptotic gene expression, Bcl2. Moreover, it might attenuate oxidative stress through the reduction in MDA levels.

3.
Int Immunopharmacol ; 124(Pt B): 111015, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827055

ABSTRACT

The therapeutic effect of liposomal IL-22 versus non-liposomal IL-22 on liver fibrosis was investigated. IL-22 (5 µg/ml) was incorporated into negative charged liposomes. Schistosoma mansoni infected mice were treated with liposomal IL-22 for either 7 or 14 days before decapitation. Liver and spleen were removed and splenocytes were isolated for in vitro investigations. TNF-α, IL-17, IL-22 and IgE levels were assessed. Hepatic granulomas were counted, granuloma index and its developmental stages were calculated. Hepatic expressions of STAT3, ß-catenin and let-7a miRNA were evaluated. Liposomal IL-22 size was clustered around 425.9 ± 58.0 nm with negative zeta potential (-18.8 ± 1.3 mV). After 14 days, 65.5% of IL-22 was released from liposomal IL-22 as was gradually observed in vitro. Liposomal IL-22 significantly (p < 0.05) decreased IL-17 level (-33.1%) of healthy splenocytes compared to non-liposomal IL-22. In vivo therapeutic effect of liposomal IL-22 revealed a significant (p < 0.05) decrease in hepatic granuloma index (-22.1%) and levels of TNF-α (-49.2%) and IL-17 (-57.3%), but a marked increase in IL-22 (64.2%) and IgE (196.1%) levels comparing to non-liposomal IL-22. Three developmental stages of hepatic granuloma (NE, EP, and P) were observed in liposomal and non-liposomal IL-22 groups (79.6 ± 1.7 and 81.8 ± 8.7, respectively, P < 0.05), with higher relative frequency of EP stage. Additionally, liposomal IL-22 treatment increased hepatic expression of STAT3 (21.7 fold change) and let-7a (3.6 fold change) and reduced ß-catenin expression (0.6 fold change) compared to healthy mice. Conclusively, liposomal IL-22 seems more effective in the treatment of liver fibrosis resulting from S. mansoni infection than non-liposomal IL-22.


Subject(s)
Interleukin-17 , MicroRNAs , Mice , Animals , beta Catenin , Tumor Necrosis Factor-alpha/genetics , Liposomes/therapeutic use , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver/pathology , MicroRNAs/genetics , Granuloma/pathology , Immunoglobulin E , Interleukin-22
4.
Clin Exp Vaccine Res ; 12(1): 32-46, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36844690

ABSTRACT

Purpose: The present study aimed to compare the immune-enhancing potential of gold nanoparticles (AuNPs) to Alum against rabies vaccine and the related immunological, physiological, and histopathological effects. Materials and Methods: Alum and AuNPs sole and in combination with rabies vaccine were used at 0.35 mg/mL and 40 nM/mL, respectively. Rats used were categorized into six groups (20/each): control rats, rabies vaccine, aluminum phosphate gel, rabies vaccine adsorbed to Alum, AuNPs, and rabies vaccine adjuvant AuNPs. Results: Liver and kidney functions were in the normal range after AuNPs and Alum adjuvanted vaccine compared to control. Interleukin-6 and interferon-γ levels were significantly increased in groups immunized with Alum and AuNPs adjuvanted vaccine, the peak level was in the case of AuNP adjuvanted vaccine on the 14th day. Ninety days post-vaccination, total immunoglobulin G (IgG) against adjuvanted rabies vaccine showed a significantly elevated anti-rabies IgG with AuNPs and Alum adsorbed vaccine compared with unadjuvanted one. The total antioxidant capacity, malondialdehyde (MDA) levels, superoxide dismutase, and glutathione peroxidase activities were significantly increased post-adjuvanted AuNPs adjuvanted vaccine vaccination than in Alum adsorbed vaccine, while MDA was significantly decreased. The histopathological examination revealed detectable alterations post-AuNPs and Alum adjuvanted vaccine immunization compared with liver and kidney profiles post-administration of unadjuvanted and non-immunized groups, meanwhile, splenic tissue revealed hyperplasia of lymphoid follicles indicating increased immune reactivity. Conclusion: The AuNPs are promising enhancers of the immune response as Alum, and the undesirable effects of AuNPs could be managed by using suitable sizes, shapes, and concentrations.

5.
Environ Toxicol ; 38(2): 266-277, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36447373

ABSTRACT

Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Animals , Rats , Acetylcholinesterase/metabolism , Aluminum Chloride/toxicity , Aluminum Chloride/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Glutathione/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Prodigiosin/metabolism , Prodigiosin/pharmacology , Prodigiosin/therapeutic use
6.
Oxid Med Cell Longev ; 2020: 4981386, 2020.
Article in English | MEDLINE | ID: mdl-32566085

ABSTRACT

Exposure to lead (Pb) causes multiorgan dysfunction including reproductive impairments. Here, we examined the protective effects of coenzyme Q10 (CoQ10) administration on testicular injury induced by lead acetate (PbAc) exposure in rats. This study employed four experimental groups (n = 7) that underwent seven days of treatment as follows: control group intraperitoneally (i.p.) treated with 0.1 ml of 0.9% NaCl containing 1% Tween 80 (v : v), CoQ10 group that was i.p. injected with 10 mg/kg CoQ10, PbAc group that was i.p. treated with PbAc (20 mg/kg), and PbAc+CoQ10 group that was i.p. injected with CoQ10 2 h after PbAc. PbAc injection resulted in increasing residual Pb levels in the testis and reducing testosterone, luteinizing hormone, and follicle-stimulating hormone levels. Additionally, PbAc exposure resulted in significant oxidative damage to the tissues on the testes. PbAc raised the levels of prooxidants (malondialdehyde and nitric oxide) and reduced the amount of endogenous antioxidative proteins (glutathione and its derivative enzymes, catalase, and superoxide dismutase) available in the cell. Moreover, PbAc induced the inflammatory response as evidenced by the upregulation of inflammatory mediators (tumor necrosis factor-alpha and interleukin-1 beta). Further, PbAc treatment induced apoptosis in the testicular cells, as indicated by an increase in Bax and caspase 3 expression, and reduced Bcl2 expression. CoQ10 supplementation improved testicular function by inhibiting Pb accumulation, oxidative stress, inflammation, cell death, and histopathological changes following PbAc exposure. Our findings suggest that CoQ10 can act as a natural therapeutic agent to protect against the reproductive impairments associated with PbAc exposure.


Subject(s)
Organometallic Compounds/toxicity , Testis/pathology , Ubiquinone/analogs & derivatives , Animals , Caspase 3/genetics , Caspase 3/metabolism , Follicle Stimulating Hormone/blood , Glutathione/metabolism , Interleukin-1beta/metabolism , Lipid Peroxidation/drug effects , Male , Nitric Oxide/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Testis/drug effects , Testosterone/blood , Tumor Necrosis Factor-alpha/metabolism , Ubiquinone/administration & dosage , Ubiquinone/pharmacology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
7.
Cent Eur J Immunol ; 44(4): 403-413, 2019.
Article in English | MEDLINE | ID: mdl-32140053

ABSTRACT

T helper 17 cells are involved in the immunopathology of cystic fibrosis. They play a key role in recruitment of neutrophils, which is the first line of defence against bacteria. Additionally, Burkholderia cenocepacia outer membrane protein A (OmpA) BCAL2958 is considered a potential protective epitope for vaccine development. The present study aimed to investigate the neutrophil response to OmpA in the presence of Th17 cytokines, IL-17 and IL-22 at different times of activation. Neutrophils were isolated from whole blood of healthy volunteers and activated with OmpA in the presence of IL-17, IL-22 or both cytokines together. Supernatant was collected after 1 h, 2 h, 4 h, 8 h, and 12 h. Neutrophil activation was assessed by measuring MPO, TNF-α, elastase, hydrogen peroxide, catalase and NO. The results revealed that the combination of IL-17 and IL-22 cytokines induced the release of NE, catalase, H2O2 and TNF-α from neutrophils activated with Burkholderia OmpA at late stages of activation. However, IL-22 alone or IL-17 alone decreased the myeloperoxidase (MPO), catalase and NE levels at early stages of neutrophil activation. The presence of IL-17 alone led to a significant increase in TNF-α level after 1 h and 12 h. However, the presence of IL-22 alone led to a significant increase in TNF-α level after only 1 h but a significant decrease after 8 h of activation was observed as compared to OmpA stimulated neutrophils. In conclusion, Th17 cytokines IL-17 and IL-22, have differential effects during the neutrophil response to Burkholderia OmpA.

8.
AMB Express ; 6(1): 41, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27325348

ABSTRACT

Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.

9.
Eur J Neurosci ; 29(3): 490-501, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19222559

ABSTRACT

The molecular mechanism underlying circadian rhythmicity within the suprachiasmatic nuclei (SCN) of the hypothalamus has two light-sensitive components, namely the clock genes Per1 and Per2. Besides, light induces the immediate-early gene c-fos. In adult rats, expression of all three genes is induced by light administered during the subjective night but not subjective day. The aim of the present study was to ascertain when and where within the SCN the photic sensitivity of Per1, Per2 and c-fos develops during early postnatal ontogenesis. The specific aim was to find out when the circadian clock starts to gate photic sensitivity. The effect of a light pulse administered during either the subjective day or the first or second part of the subjective night on gene expression within the rat SCN was determined at postnatal days (P) 1, 3, 5 and 10. Per1, Per2 and c-fos mRNA levels were assessed 30 min, 1 and 2 h after the start of each light pulse by in situ hybridization histochemistry. Expression of Per1 and c-fos was light responsive from P1, and the responses began to be gated by the circadian clock at P3 and P10, respectively. Expression of Per2 was only slightly light responsive at P3, and the response was not fully gated until P5. These data demonstrate that the light sensitivity of the circadian clock develops gradually during postnatal ontogenesis before the circadian clock starts to control the response. The photoinduction of the clock gene Per2 develops later than that of Per1.


Subject(s)
Biological Clocks/genetics , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Suprachiasmatic Nucleus/metabolism , Transcription Factors/metabolism , Aging/genetics , Aging/radiation effects , Animals , Animals, Newborn , Biological Clocks/radiation effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/radiation effects , Female , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/radiation effects , Light , Light Signal Transduction/genetics , Light Signal Transduction/radiation effects , Male , Neurons/radiation effects , Nuclear Proteins/genetics , Nuclear Proteins/radiation effects , Period Circadian Proteins , Photic Stimulation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/radiation effects , RNA, Messenger/metabolism , RNA, Messenger/radiation effects , Rats , Rats, Wistar , Suprachiasmatic Nucleus/radiation effects , Transcription Factors/genetics , Transcription Factors/radiation effects
10.
J Biol Rhythms ; 23(5): 435-44, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18838609

ABSTRACT

The molecular clockwork underlying the generation of circadian rhythmicity within the suprachiasmatic nucleus (SCN) develops gradually during ontogenesis. The authors' previous work has shown that rhythms in clock gene expression in the rat SCN are not detectable at embryonic day (E) 19, start to form at E20 and develop further via increasing amplitude until postnatal day (P) 10. The aim of the present work was to elucidate whether and how swiftly the immature fetal and neonatal molecular SCN clocks can be reset by maternal cues. Pregnant rats maintained under a light-dark (LD) regimen with 12 h of light and 12 h of darkness were exposed to a 6-h delay of the dark period and released into constant darkness at different stages of the fetal SCN development. Adult rats maintained under the same LD regimen were exposed to an identical shifting procedure. Daily rhythms in spontaneous c-fos, Avp, Per1, and Per2 expression were examined within the adult and newborn SCN by in situ hybridization. Exposure of adult rats to the shifting procedure induced a significant phase delay of locomotor activity within 3 days after the phase shift as well as a delay in the rhythms of c-fos and Avp expression within 3 days and Per1 and Per2 expression within 5 days. Exposure of pregnant rats to the shifting procedure at E18, but not at E20, delayed the rhythm in c-fos and Avp expression in the SCN of newborn pups at P0-1. The shifting procedure at E20 did, however, induce a phase delay of Per1 and Per2 expression rhythms at P3 and P6. Hence, 5 days were necessary for phase-shifting the pups' SCN clock by maternal cues, be it the interval between E18 and P0-1 or the interval between E20 and P3, while only 3 days were necessary for phase-shifting the maternal SCN by photic cues. These results demonstrate that the SCN clock is capable of significant phase shifts at fetal developmental stages when no or very faint molecular oscillations can be detected.


Subject(s)
Gene Expression Regulation, Developmental , Suprachiasmatic Nucleus/embryology , Suprachiasmatic Nucleus/metabolism , Animals , Animals, Newborn , Arginine Vasopressin/biosynthesis , Cell Cycle Proteins/biosynthesis , Female , In Situ Hybridization , Locomotion , Male , Models, Biological , Mothers , Nuclear Proteins/biosynthesis , Oscillometry , Period Circadian Proteins , Proto-Oncogene Proteins c-fos/biosynthesis , Rats
11.
Chronobiol Int ; 23(1-2): 237-43, 2006.
Article in English | MEDLINE | ID: mdl-16687297

ABSTRACT

The mammalian circadian pacemaker is located in the suprachiasmatic nucleus (SCN), which is composed of dorsomedial (dm) and ventrolateral (vl) regions. The molecular clockwork responsible for the SCN rhythmicity consists of clock genes and their transcriptional-translational feedback loops. The rat SCN rhythmicity and clockwork are affected by the photoperiod. The aim of this study was to elucidate development of the rat SCN rhythmicity, namely of the rhythmicity of the dm- and vl-SCN and of expression of clock genes and to ascertain when the photoperiod starts to affect the SCN rhythmicity. Rhythmicity of the dm-SCN, measured as the rhythm in spontaneous c-FOS production, developed earlier than that of the vl-SCN, which was measured as the rhythm in c-FOS photoinduction. However, photoperiodic affection of the rhythmicity occurred earlier in the vl-SCN than in the dm-SCN. From the 4 clock genes (Per1, Per2, Cry1 and Bmal1) studied, the expression of Bmal1 and Per1 was rhythmic already in 1-day-old rats; at this age, the Per2 mRNA rhythm just started to form and no rhythm in Cry1 expression was detected. After the second postnatal day, all 4 genes were expressed in a rhythmic manner. Thereafter, the rhythms matured gradually via increasing amplitude. Per1 and Per2 mRNA rhythms started to be affected by the photoperiod at the 10th postnatal day. The data suggest that the rhythms in clock genes expression in the rat SCN develop mostly postnatally. The molecular clockwork may start to be photoperiod-dependent around the 10th postnatal day.


Subject(s)
Circadian Rhythm , Gene Expression Regulation, Developmental , Photoperiod , Proto-Oncogene Proteins c-fos/metabolism , ARNTL Transcription Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins , Cryptochromes , Flavoproteins/metabolism , Light , Nuclear Proteins/metabolism , Period Circadian Proteins , RNA, Messenger/metabolism , Rats , Suprachiasmatic Nucleus/embryology , Time Factors , Transcription Factors/metabolism
12.
FEBS Lett ; 580(12): 2836-42, 2006 May 22.
Article in English | MEDLINE | ID: mdl-16563387

ABSTRACT

In mammals, the principal circadian clock within the suprachiasmatic nucleus (SCN) entrains the phase of clocks in numerous peripheral tissues and controls the rhythmicity in various body functions. During ontogenesis, the molecular mechanism responsible for generating circadian rhythmicity develops gradually from the prenatal to the postnatal period. In the beginning, the maternal signals set the phase of the newly developing fetal and early postnatal clocks, whereas the external light-dark cycle starts to entrain the clocks only later. This minireview discusses the complexity of signaling pathways from mothers and the outside world to the fetal and newborn animals' circadian clocks.


Subject(s)
Biological Clocks , Suprachiasmatic Nucleus/physiology , Animals , Darkness , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...