Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Life Sci ; 344: 122566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38499285

ABSTRACT

AIM: This study aims to investigate the hepatoprotective effect of the antipsychotic drug trifluoperazine (TFP) against cyclophosphamide (CPA)-induced hepatic injury by exploring its effect on autophagy and the Nrf2/HO-1 signaling pathway. MAIN METHODS: The hepatotoxicity of CPA was assessed by biochemical analysis of the serum hepatotoxicity markers (ALT, AST, and direct bilirubin), histopathological examination, and ultrastructure analysis by transmission electron microscopy (TEM). The ELISA technique was used to assess the hepatic content of oxidative stress (MDA and SOD) and inflammatory markers (IL-1ß and TNF-α). Immunohistochemical assessment was used to investigate the hepatic expression of NF-κB, Nrf2, caspase-3, as well as autophagy flux markers (p62 and LC3B). The mRNA expression of HO-1 was assessed using RT-qPCR. Western blot assay was used to determine the expression of p-AKT and p-mTOR. KEY FINDINGS: TFP improved CPA-induced hepatotoxicity by reducing the elevated hepatotoxicity markers, and alleviating the histopathological changes with improving ultrastructure alterations. It also reduced oxidative stress by reducing MDA content and upregulating SOD activity. In addition, it exhibited anti-inflammatory and anti-apoptotic effects by decreasing NF-κB expression, IL-1ß, TNF-α levels, and caspase-3 expression. Furthermore, TFP-induced hepatoprotection was mediated by favoring Nrf2 expression and increasing the mRNA level of HO-1. As well, it improved autophagy by increasing LC3B expression concurrently with reducing p62 expression. Moreover, TFP modulated the AKT/mTOR pathway by reducing the expression of p-AKT and p-mTOR. SIGNIFICANCE: TFP significantly protected against CPA-induced hepatotoxicity by upregulating Nrf2/HO-1 signaling along with enhancement of protective autophagy via inhibition of the AKT/mTOR signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury , Trifluoperazine , Mice , Animals , Trifluoperazine/pharmacology , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Oxidative Stress , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Cyclophosphamide/pharmacology , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism
2.
Int Immunopharmacol ; 130: 111736, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38401462

ABSTRACT

AIMS: Autism spectrum disorder (ASD) is a global concern,affecting around 75 million individuals.Various factors contribute to ASD,including mercury-containing preservatives like thimerosal (Thim) found in some vaccines.This study explored whether citicoline could be a therapeutic option for Thim-induced neuronal damage in a mouse model of ASD.Additionally,the study investigated the effects of citicoline on the α7nAChRs/Akt/Nrf2/caspase-3 pathway,which may be involved in the development of ASD. MATERIALS AND METHODS: The study separated newborn mice into four groups.The control group received saline injections,while the Thim group received intramuscular injections of 3000 µg Hg/kg Thim on days 7,9,11,and 15 after birth.The two citicoline groups were administered Thim followed by intraperitoneal injections of 250 mg/kg or 500 mg/kg citicoline for three weeks.Afterward,various parameters were assessed, including growth,behavior,brain histopathology,oxidative stress,apoptotic,and inflammatory markers. KEY FINDINGS: Untreated Thim-exposed mice exhibited significant brain damage,which was substantially alleviated by citicoline treatment.This beneficial effect was associated with increased expressions and concentrations of brain α7nAChRs and Akt, increased brain content of Nrf2, and the hippocampus contents of acetylcholine. Citicoline treatment decreased the brain levels of oxidative stress markers (MDA and NO),the apoptotic marker caspase-3,and pro-inflammatory markers (NF-κB,TNF-α,and IL-1ß). The drug also increased the brain GPx activity. SIGNIFICANCE: Based on the results of this study,the α7nAChRs pathway appears to be essential for the therapeutic effectiveness of citicoline in treating Thim-induced ASD in mice.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Thimerosal/therapeutic use , Thimerosal/adverse effects , Cytidine Diphosphate Choline , alpha7 Nicotinic Acetylcholine Receptor , Caspase 3 , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autistic Disorder/chemically induced , NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Signal Transduction
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37895902

ABSTRACT

Ulcerative colitis (UC) is an inflammatory ailment of the intestine associated with the upregulation of oxidative stress and pro-inflammatory cytokines. Here, we aimed to assess the consequences of Encephalartos villosus (EV) Lem extract on acetic acid (AA)-induced UC. Rats were randomly classified into five groups, as follows: control, AA, AA + mesalazine, AA + EV (50 mg/kg), and AA + EV (100 mg/kg) groups. EV (50 mg/kg and 100 mg/kg) and mesalzine (100 mg/kg) were administered orally for 14 days before the induction of UC. On the last day of the experiment, colitis was provoked via the intra-rectal delivery of 3% AA. Then, after 24 h, the rats were sacrificed and their colon tissues were isolated and inspected. Interestingly, EV pretreatment substantially (p < 0.05) reduced the elevated colon weight/length ratio and ulcer area and normalized the histological changes and immunohistochemical features. In addition, EV efficiently reduced the levels of myeloperoxidase (MPO) and increased the activity of glutathione peroxidase (GS-PX) and catalase (CAT). EV (100 mg/kg) resulted in a downregulation of toll-like receptor 4 (TLR-4) and upregulation of heme oxygenase 1 (HO-1) and occludin expression levels. Concerning the anti-inflammatory mechanisms, EV reduced the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear transcription factor kappa B (NF-ĸB) and inhibited cyclooxygenase-2 (COX-2) expression levels. It also decreased caspase-3 levels. Our results indicate that the oral intake of EV improves AA-induced colitis in rats through its antioxidative effects and the modulation of pro-inflammatory cytokines, as well as the restoration of mucosal integrity. Consequently, EV may be an efficient therapeutic candidate for UC.

4.
Biomed Pharmacother ; 168: 115678, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820564

ABSTRACT

Acute lung injury (ALI) is a serious illness with a high mortality rate of 40-60%. It is characterised by systemic inflammatory processes and oxidative stress. Gram-negative bacterial infections are the major cause of ALI, and lipopolysaccharide (LPS) is the major stimulus for the release of inflammatory mediators. Hence, there is an urgent need to develop new therapies which ameliorate ALI and prevent its serious consequences. The Middle Eastern native plant Tamarix nilotica (Ehrenb) Bunge belongs to the family Tamaricaceae, which exhibits strong anti-inflammatory and antioxidant effects. Thus, the current work aimed to ensure the plausible beneficial effects of T. nilotica different fractions on LPS-induced acute lung injury after elucidating their phytochemical constituents using LC/MS analysis. Mice were randomly allocated into six groups: Control saline, LPS group, and four groups treated with total extract, DCM, EtOAc and n-butanol fractions, respectively, intraperitoneal at 100 mg/kg doses 30 min before LPS injection. The lung expression of iNOS, TGF-ß1, NOX-1, NOX-4 and GPX-1 levels were evaluated. Also, oxidative stress was assessed via measurements of MDA, SOD and Catalase activity, and histopathological and immunohistochemical investigation of TNF-α in lung tissues were performed. T. nilotica n-butanol fraction caused a significant downregulation in iNOS, TGF-ß1, TNF-α, NOX-1, NOX-4, and MDA levels (p ˂ 0.05), and significantly elevated GPX-1 expression levels, SOD, and catalase activity (p ˂ 0.05), and alleviated all histopathological abnormalities confirming its advantageous role in ALI. The antibacterial activities of T. nilotica and its different fractions were investigated by agar well diffusion method and broth microdilution method. Interestingly, the n-butanol fraction exhibited the best antibacterial activity against Klebsiella pneumoniae clinical isolates. It also significantly reduced exopolysaccharide quantity, cell surface hydrophobicity, and biofilm formation.


Subject(s)
Acute Lung Injury , Tamaricaceae , Mice , Animals , Lipopolysaccharides/adverse effects , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Catalase/metabolism , 1-Butanol/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung , Antioxidants/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
5.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631096

ABSTRACT

Acute kidney injury (AKI) is one of the major side effects of cisplatin, a remarkable anticancer agent. Therefore, there is a growing need to find an agent that could mitigate cisplatin-induced nephrotoxicity. Betulinic acid (BA) is a natural compound isolated from Silene succulenta Forssk for the first time, with miraculous biological activities and no reports of its effect on the nephrotoxicity induced by cisplatin. Mice received BA orally with doses of 30 and 50 mg/kg before the intraperitoneal injection of cisplatin. Betulinic acid was found to decrease serum levels of creatinine and tissue levels of NGAL and kidney injury molecule (KIM-1) and improve the histological changes in the kidney. In addition, BA decreased the oxidative stress marker malondialdehyde (MDA), increased superoxide dismutase (SOD) antioxidative activity and suppressed the intensity of IL-1B and NFкB immuno-staining. Interestingly, betulinic acid enhanced autophagy by increasing beclin 1, ATG5, and LC3II and decreasing p62 expressions. Thus, our findings suggest betulinic acid as a potential agent that may protect from acute kidney injury by targeting inflammation, oxidative stress, and autophagy processes. Novel drugs are needed to combat the spreading of multidrug resistance between pathogenic bacteria, especially uropathogenic isolates. So, we elucidated the antibacterial properties of BA on Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae. Betulinic acid had minimum inhibitory concentration values (128 to 512 µg/mL). In addition, it adversely affected the membrane integrity of the tested isolates. Accordingly, betulinic acid should be clinically investigated in the future for urinary tract diseases.

6.
Biomed Pharmacother ; 165: 115010, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343436

ABSTRACT

Doxorubicin (DOX) is a widely used chemotherapeutic agent for various tumors treatment; apart from its chemotherapeutic activity, the traditional usage of DOX has been limited by its adverse effects on multiple organs, mainly hepatotoxicity. The molecular mechanisms underlying DOX hepatotoxicity are mainly due to the production of reactive oxygen species (ROS) inducing oxidative stress, diminishing antioxidant enzymes, apoptosis, inflammation, and mitochondrial dysfunction. Thus, there is an urgent need to develop a therapy that minimizes DOX hepatotoxicity and widens its use in various types of cancers without fear of its serious hepatotoxicity. Ginkgetin (GINK), a natural biflavonoid, exhibits diverse actions, including promising free radical scavenging, antioxidant, and anti-inflammatory activities. So, this study's objectives were to determine whether GINK could mitigate DOX's hepatotoxic effects and look into a putative hepatoprotective molecular pathway. Mice were divided into five groups: Normal control, control GINK 100, Untreated DOX group, and DOX groups treated with GINK (50 and 100 mg/kg) intraperitoneally daily for four days before DOX administration and an additional three days afterward. GINK 100 pretreatment showed marked protection from DOX hepatotoxicity and also attenuation of histopathological structural alterations. These outcomes were corroborated biochemically by a considerable decrease in alanine aminotransferases, aspartate aminotransferase, and alkaline phosphatase levels. GINK significantly augmented silent information regulator 1 and nuclear translocation of NF-E2-related factor 2 and repressed the expression and protein levels of forkhead box protein O1, inducible nitric oxide synthase, and P53 relative to DOX group. GINK alleviated oxidative stress and induced significant anti-inflammatory effects via suppression of interleukin-6, nuclear factor Kabba B, and iNOS respectively. This study is the first to investigate GINK's potentially beneficial effects in acute DOX hepatotoxicity, possibly exhibiting antioxidant, anti-inflammatory, and anti-apoptotic effects by modulation of Sirt1/FOXO-1/NF-κB Signal.


Subject(s)
Biflavonoids , Chemical and Drug Induced Liver Injury , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Biflavonoids/pharmacology , Doxorubicin/pharmacology , Oxidative Stress , Chemical and Drug Induced Liver Injury/prevention & control , Apoptosis
7.
Front Pharmacol ; 13: 905828, 2022.
Article in English | MEDLINE | ID: mdl-35814241

ABSTRACT

Doxorubicin (DOX) is an anticancer agent for treating solid and soft tissue malignancies. However, the clinical use of DOX is restricted by cumulative, dose-dependent cardiotoxicity. Therefore, the present study aimed to assess the cardioprotective effects of P. ginseng C. A. Mey, febuxostat, and their combination against DOX-induced cardiotoxicity. Thirty-five Sprague Dawley male rats were used in this study. The animals were randomly divided into five groups, with seven rats per group. The control group received normal saline, the induced group received DOX only, and the treated group received P. ginseng, febuxostat, and their combination before DOX treatment. Biomarkers of acute cardiac toxicity were assessed in each group. Results showed that treatment with the combination of febuxostat and P. ginseng before DOX led to a significant improvement in the biomarkers of acute DOX-induced cardiotoxicity. In conclusion, the combination of P. ginseng and febuxostat produced more significant cardioprotective effects against DOX-induced cardiotoxicity when compared to either P. ginseng or febuxostat when used alone. The potential mechanism of this combination was mainly mediated by the anti-inflammatory and antioxidant effects of P. ginseng and febuxostat.

8.
Drug Deliv ; 29(1): 1848-1862, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35708451

ABSTRACT

Epigallocatechin-3-gallate (EGCG) was isolated from Cycas thouarsii leaves for the first time and encapsulated in aqueous core poly(lactide-co-glycolide) (PLGA) nanocapsules (NCs). This work investigates antimicrobial activity and in vivo reno-protective effects of EGCG-PLGA NCs in cisplatin-induced nephrotoxicity. A double emulsion solvent evaporation process was adopted to prepare PLGA NCs loaded with EGCG. Particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (%EE), structural morphology, and in vitro release platform were all studied in vitro. The optimum formula (F2) with particle size (61.37 ± 5.90 nm), PDI (0.125 ± 0.027), zeta potential (-11.83 ± 3.22 mV), %EE (85.79 ± 5.89%w/w), initial burst (36.85 ± 4.79), and percent cumulative release (87.79 ± 9.84) was selected for further in vitro/in vivo studies. F2 exhibited an enhanced antimicrobial activity against uropathogens as it had lower minimum inhibitory concentration (MIC) values and a more significant impact on bacterial growth than free EGCG. Forty male adult mice were randomly allocated into five groups: control vehicle, untreated methotrexate, MTX groups treated with a daily oral dose of free EGCG, placebo PLGA NCs, and EGCG PLGA NCs (F2) for 10 days. Results showed that EGCG PLGA NCs (F2) exerted promising renoprotective effects compared to free EGCG. EGCG PLGA NCs group induced a significant decrease in kidney index, serum creatinine, kidney injury molecule-1 (KIM-1), NGAL serum levels, and pronounced inhibition of NLPR-3/caspase-1/IL/1ß inflammasome pathway. It also significantly ameliorated oxidative stress and decreased NFκB, Bax expression levels. Aqueous core PLGA NCs are a promising formulation strategy that provides high polymeric protection and sustained release pattern for hydrophilic therapeutic agents.


Subject(s)
Nanocapsules , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Catechin/analogs & derivatives , Cisplatin , Kidney , Male , Mice , Nanocapsules/chemistry , Nanoparticles/chemistry , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
9.
Biomed Pharmacother ; 152: 113225, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35671584

ABSTRACT

Nephrotoxicity (NT) is a renal-specific situation caused by different toxins and drugs like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs like diclofenac (DCF) lead to glomerular dysfunction. Pentoxifylline (PTX) and berberine (BER) have antioxidant and anti-inflammatory properties. Thus, the objective of the present study was to investigate the ameliorative effect of PTX, BER and their combination against DCF-mediated acute NT. Induction of acute NT was done via DCF injection (150 mg/kg I.P, for 6 days) in rats. PTX 200 mg/kg, BER 200 mg/kg and their combination were administrated for 6 days prior to DCF injection and concurrently with DCF for additional 6 days. Acute NT was evaluated biochemically and histopathologically by measuring blood urea (BU), serum creatinine (SCr), kidney injury molecule-1(KIM-1), integrin (ITG), and vitronectin (VTN), interleukin (IL)-18, Neutrophil gelatinase-associated lipocalin (NGAL), glomerular filtration rate (GFR), superoxide dismutase (SOD) and glutathione (GSH) and malondialdehyde (MDA) with the scoring of histopathological alterations. PTX, BER and their combination significantly (P < 0.05) attenuated biochemical and histopathological changes in DCF-mediated acute NT by amelioration of BU, SCr, KIM-1, ITG, VTN, IL-18, NGAL, GFR, SOD, GSH, MDA and scoring of histopathological alterations. The combined effects of PTX and BER produced more significant effects (P < 0.05) than either PTX or BER when used alone against DCF-induced acute NT. In conclusion, BER and BTX were found to have potential renoprotective effects against DCF-induced NT in rats by inhibiting inflammatory reactions and oxidative stress.


Subject(s)
Berberine , Drug-Related Side Effects and Adverse Reactions , Pentoxifylline , Renal Insufficiency , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Berberine/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Diclofenac/pharmacology , Drug-Related Side Effects and Adverse Reactions/metabolism , Glutathione/metabolism , Inflammation/metabolism , Kidney , Lipocalin-2/metabolism , Male , Oxidative Stress , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Rats , Rats, Sprague-Dawley , Renal Insufficiency/metabolism , Superoxide Dismutase/metabolism
10.
Front Med (Lausanne) ; 9: 866343, 2022.
Article in English | MEDLINE | ID: mdl-35492324

ABSTRACT

Methotrexate (MTX), an antineoplastic and immunosuppressive drug, widely used in the treatment of different types of cancers and the management of chronic inflammatory diseases. However, its use is associated with hepatotoxicity. Vitamin C (VC) and curcumin (CUR) exhibit anti-inflammatory and antioxidant effects. Thus, we aimed to investigate the potential hepatoprotective effects of VC and CUR pretreatment alone and in combination against MTX-induced hepatotoxicity. Albino mice were randomly divided into 7 groups: the control group, which received only normal saline; MTX group; VC group, pretreated with VC (100 or 200 mg/kg/day orally) for 10 days; CUR group, pretreated with CUR (10 or 20 mg/kg/day orally); and combination group, which received VC (100 mg/kg) and CUR (10 mg/kg). MTX was administered (20 mg/kg, intraperitoneally) to all the groups on the tenth day to induce hepatotoxicity. Forty eight hours after MTX administration, the mice were anesthetized. Blood samples were collected, the liver was removed for biochemical analysis, and a part of the tissue was preserved in formalin for histopathological analysis. The results indicated that pretreatment with a combination of VC and CUR induced a more significant decrease in the serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, and lactic dehydrogenase and a significant increase in the tissue level of superoxide dismutase and glutathione; furthermore, it induced a significant decrease in malondialdehyde levels and improvement in histopathological changes in the liver tissues, confirming the potential hepatoprotective effects of the combination therapy on MTX-induced liver injury. To conclude, MTX-induced hepatotoxicity is mediated by induction of oxidative stress as evident by increased lipid peroxidation and reduction of antioxidant enzyme activity. Pretreatment with VC, CUR or their combination reduces the MTX-induced hepatotoxicity by antioxidant and anti-inflammatory effects. However, the combined effect of VC and CUR provided a synergistic hepatoprotective effect that surpasses pretreatment with CUR alone but seems to be similar to that of VC 200 mg/kg/day. Therefore, VC and CUR combination or a large dose of VC could be effective against MTX-induced hepatotoxicity. In this regard, further studies are warranted to confirm the combined hepatoprotective effect of VC and CUR against MTX-induced hepatotoxicity.

11.
Biomedicines ; 10(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35625871

ABSTRACT

Cisplatin (CP) is a productive anti-tumor used to treat numerous tumors. However, multiple toxicities discourage prolonged use, especially toxicity on the reproductive system. This experiment was mapped out to determine the potential therapeutic impact of Bilobetin on CP-induced testicular damage. Herein, Bilobetin was isolated from Cycas thouarsii leaves R. Br ethyl acetate fractions for the first time. A single dose of CP (7 mg/kg, IP) was used to evoke testicular toxicity on the third day. Rats were classified into five groups; Normal control, Bilobetin 12 mg/kg, Untreated CP, and CP treated with Bilobetin (6 and 12 mg/kg, respectively) orally daily for ten days. Bilobetin treatment ameliorated testicular injury. In addition, it boosted serum testosterone levels considerably and restored relative testicular weight. Nevertheless, apoptosis biomarkers such as P53, Cytochrome-C, and caspase-3 decreased significantly. Additionally, it enhanced the testes' antioxidant status via the activation of Nrf-2, inhibition of Keap-1, and significant elevation of SOD activity in addition to a reduction in lipid peroxidation. Histopathologically, Bilobetin preserved testicular architecture and improved testicular immunostaining of Ki67 substantially, showing evidence of testicular regeneration. Bilobetin's beneficial effects on CP-induced testicular damage are associated with enhanced antioxidant effects, lowered apoptotic signals, and the restoration of testes' regenerative capability. In addition, Bilobetin may be used in combination with CP in treatment protocols to mitigate CP-induced testicular injury.

12.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35631375

ABSTRACT

Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.

13.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35215291

ABSTRACT

A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba officinalis roots rhoifolin rich fraction (RRF). The LC-ESI-MS/MS analysis of S. officinalis roots crude ethanol extract resulted in a tentative identification of 56 bioactive metabolites, while a major flavonoid fraction was isolated by column chromatography and identified by thin-layer chromatography coupled with electrospray ionization/mass spectrometry (TLC-ESI/MS), where rhoifolin was the major component representing 94.5% of its content. The antibiofilm activity of RRF on the mono-species and dual-species biofilm of P. aeruginosa and S. aureus was investigated. RRF exhibited inhibitory activity on P. aeruginosa and S. aureus mono-species biofilm at 2× minimum inhibitory concentration (MIC) and 4× MIC values. It also significantly inhibited the dual-species biofilm at 4× MIC values. Moreover, the wound-healing characteristics of RRF gel formulation were investigated. Rats were randomly allocated into four groups (eight rats in each): Untreated control; Blank gel; Betadine cream, and RRF gel groups. Animals were anesthetized, and full-thickness excisional skin wounds were created on the shaved area in the dorsal skin. The gels were topically applied to the wound's surface daily for 10 days. The results demonstrated that RRF had a promising wound-healing effect by up-regulating the platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and fibronectin, while metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), IL-1ß, and nitric oxide (NO) levels were suppressed. It also enhanced the immune staining of transforming growth factor (TGF-ß) and improved histopathological findings. Furthermore, it displayed an immunomodulatory action on lipopolysaccharide-induced peripheral blood mononuclear cells. Hence, the wound-healing effect of rhoifolin was confirmed by supporting re-epithelization, angiogenesis, antibacterial, immunomodulatory, and anti-inflammatory activities.

14.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209125

ABSTRACT

The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-ß-d-glucoside, apigenin-7-O-ß-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 µL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1ß, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1ß, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Yucca/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Biomarkers , Cell Line , Cell Survival/drug effects , Chromatography, Liquid , Disease Models, Animal , Edema/drug therapy , Edema/etiology , Edema/pathology , Humans , Male , Microbial Sensitivity Tests , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Rats , Spectrum Analysis , Tandem Mass Spectrometry , Yucca/metabolism
15.
Biomed Pharmacother ; 154: 113643, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36942597

ABSTRACT

Doxorubicin (DOX) is an available chemotherapeutic drug for treating various tumors. However, its effectiveness is limited by cardiotoxicity. Amentoflavone (AMF), a natural biflavonoid separated from Cycas thouarsii ethyl acetate fraction, displays promising anticancer, anti-inflammatory, and antioxidant effects. Thus, our research aims to explore whether AMF could boost cardioprotective effects against DOX cardiotoxicity and reveal the potential underlying mechanisms of cardioprotection. Mice were classified into four groups; Normal control, Untreated DOX group, and DOX groups treated with AMF (40 and 80 mg/kg, respectively) intraperitoneal injection daily for four days before doxorubicin administration and for additional three days following DOX administration to assess cardiotoxicity. Echocardiography showed that AMF 80 treated group was protected from DOX cardiotoxicity. Additionally, it alleviated histopathological structural alterations and effectively restored heart weight and body weight ratio. These effects were confirmed biochemically by a substantially reduced serum creatine kinase-MB (CK-MB) and aspartate aminotransferase (AST) levels. AMF effectively restored nuclear respiratory factor-1(NRF-1), mitochondrial transcription factor A (TFAM), and normalized heat shock protein - 27(HSP-27) expression levels compared to the DOX group. Moreover, AMF mitigated oxidative stress conditions and significantly suppressed NADPH oxidase (NOX) expression levels. It also showed significant anti-inflammatory effects via suppressing interleukin-6 (IL-6) expression and decreasing nuclear factor Kabba B (NF-κb) immune-staining. In addition, AMF markedly reduced FAS ligand (FASL) expression and p53 immune staining in cardiac tissue. This study is the first for the in vivo potential beneficial effects of AMF against acute DOX cardiotoxicity, possibly via exerting antioxidant, anti-inflammatory, and anti-apoptotic effects and restoring mitochondrial function.


Subject(s)
Biflavonoids , Cardiotoxicity , Mice , Animals , Cardiotoxicity/metabolism , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Oxidative Stress , Doxorubicin/toxicity , Antioxidants/metabolism , NF-kappa B/metabolism , Apoptosis , Antibiotics, Antineoplastic/pharmacology
16.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34959713

ABSTRACT

The global emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused the entire world's attention toward searching for a potential remedy for this disease. Thus, we investigated the antiviral activity of Agrimonia pilosa ethanol extract (APEE) against SARS-CoV-2 and it exhibited a potent antiviral activity with IC50 of 1.1 ± 0.03 µg/mL. Its mechanism of action was elucidated, and it exhibited a virucidal activity and an inhibition of viral adsorption. Moreover, it presented an immunomodulatory activity as it decreased the upregulation of gene expression of COX-2, iNOS, IL-6, TNF-α, and NF-κB in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells. A comprehensive analysis of the phytochemical fingerprint of APEE was conducted using LC-ESI-MS/MS technique for the first time. We detected 81 compounds and most of them belong to the flavonoid and coumarin classes. Interestingly, isoflavonoids, procyanidins, and anthocyanins were detected for the first time in A. pilosa. Moreover, the antioxidant activity was evidenced in DPPH (IC50 62.80 µg/mL) and ABTS (201.49 mg Trolox equivalents (TE)/mg) radical scavenging, FRAP (60.84 mg TE/mg), and ORAC (306.54 mg TE/g) assays. Furthermore, the protective effect of APEE was investigated in Lipopolysaccharides (LPS)-induced acute lung injury (ALI) in mice. Lung W/D ratio, serum IL-6, IL-18, IL-1ß, HO-1, Caspase-1, caspase-3, TLR-4 expression, TAC, NO, MPO activity, and histopathological examination of lung tissues were assessed. APEE induced a marked downregulation in all inflammation, oxidative stress, apoptosis markers, and TLR-4 expression. In addition, it alleviated all histopathological abnormalities confirming the beneficial effects of APEE in ALI. Therefore, APEE could be a potential source for therapeutic compounds that could be investigated, in future preclinical and clinical trials, in the treatment of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...