Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J R Soc Interface ; 21(210): 20230420, 2024 01.
Article in English | MEDLINE | ID: mdl-38228182

ABSTRACT

In this paper, we propose a method to model radiofrequency electrosurgery to capture the phenomena at higher temperatures and present the methods for parameter estimation. Experimental data taken from our surgical trials performed on in vivo porcine liver show that a non-Fourier Maxwell-Cattaneo-type model can be suitable for this application when used in combination with an Arrhenius-type model that approximates the energy dissipation in physical and chemical reactions. The resulting model structure has the advantage of higher accuracy than existing ones, while reducing the computation time required.


Subject(s)
Electrosurgery , Hot Temperature , Animals , Swine , Electrosurgery/methods , Liver/surgery , Thermal Conductivity , Radio Waves
2.
IEEE Trans Biomed Eng ; 70(6): 1849-1857, 2023 06.
Article in English | MEDLINE | ID: mdl-37015453

ABSTRACT

We present a novel thermodynamic parameter estimation framework for energy-based surgery on live tissue, with direct applications to tissue characterization during electrosurgery. This framework addresses the problem of estimating tissue-specific thermodynamics in real-time, which would enable accurate prediction of thermal damage impact to the tissue and damage-conscious planning of electrosurgical procedures. Our approach provides basic thermodynamic information such as thermal diffusivity, and also allows for obtaining the thermal relaxation time and a model of the heat source, yielding in real-time a controlled hyperbolic thermodynamics model. The latter accounts for the finite thermal propagation time necessary for modeling of the electrosurgical action, in which the probe motion speed often surpasses the speed of thermal propagation in the tissue operated on. Our approach relies solely on thermographer feedback and a knowledge of the power level and position of the electrosurgical pencil, imposing only very minor adjustments to normal electrosurgery to obtain a high-fidelity model of the tissue-probe interaction. Our method is minimally invasive and can be performed in situ. We apply our method first to simulated data based on porcine muscle tissue to verify its accuracy and then to in vivo liver tissue, and compare the results with those from the literature. This comparison shows that parameterizing the Maxwell-Cattaneo model through the framework proposed yields a noticeably higher fidelity real-time adaptable representation of the thermodynamic tissue response to the electrosurgical impact than currently available. A discussion on the differences between the live and the dead tissue thermodynamics is also provided.


Subject(s)
Liver , Thermography , Animals , Swine , Liver/diagnostic imaging , Liver/surgery , Hot Temperature , Electrosurgery/methods
3.
ArXiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36748004

ABSTRACT

We present a novel thermodynamic parameter estimation framework for energy-based surgery on live tissue, with direct applications to tissue characterization during electrosurgery. This framework addresses the problem of estimating tissue-specific thermodynamics in real-time, which would enable accurate prediction of thermal damage impact to the tissue and damage-conscious planning of electrosurgical procedures. Our approach provides basic thermodynamic information such as thermal diffusivity, and also allows for obtaining the thermal relaxation time and a model of the heat source, yielding in real-time a controlled hyperbolic thermodynamics model. The latter accounts for the finite thermal propagation time necessary for modeling of the electrosurgical action, in which the probe motion speed often surpasses the speed of thermal propagation in the tissue operated on. Our approach relies solely on thermographer feedback and a knowledge of the power level and position of the electrosurgical pencil, imposing only very minor adjustments to normal electrosurgery to obtain a high-fidelity model of the tissue-probe interaction. Our method is minimally invasive and can be performed in situ. We apply our method first to simulated data based on porcine muscle tissue to verify its accuracy and then to in vivo liver tissue, and compare the results with those from the literature. This comparison shows that parameterizing the Maxwell-Cattaneo model through the framework proposed yields a noticeably higher fidelity real-time adaptable representation of the thermodynamic tissue response to the electrosurgical impact than currently available. A discussion on the differences between the live and the dead tissue thermodynamics is also provided.

4.
Control Technol Appl ; 2023: 886-891, 2023 Aug.
Article in English | MEDLINE | ID: mdl-39295628

ABSTRACT

In this work we present Lodestar, an integrated engine for rapid real-time control system development. Using a functional block diagram paradigm, Lodestar allows for complex multi-disciplinary control software design, while automatically resolving execution order, circular data-dependencies, and networking. In particular, Lodestar presents a unified set of control, signal processing, and computer vision routines to users, which may be interfaced with external hardware and software packages using interoperable user-defined wrappers. Lodestar allows for user-defined block diagrams to be directly executed, or for them to be translated to overhead-free source code for integration in other programs. We demonstrate how our framework departs from approaches used in state-of-the-art simulation frameworks to enable real-time performance, and compare its capabilities to existing solutions in the realm of control software, emphasizing the convenience of using Lodestar in low-level control system design and implementation. To demonstrate the utility of Lodestar in real-time control systems design, we have applied Lodestar to implement a real-time torque-based controller for a robotic arm. To compare the algorithm design approach in Lodestar to a classical ground-up approach, we have developed a novel autofocus algorithm for use in thermography-based localization and parameter estimation in electrosurgery and other areas of robot-assisted surgery. We use this example to illustrate that Lodestar considerably eases the design process. We also show how Lodestar can seamlessly interface with existing simulation and networking framework in a number of simulation examples.

5.
IEEE Trans Automat Contr ; 68(6): 3485-3500, 2023 Jun.
Article in English | MEDLINE | ID: mdl-39108930

ABSTRACT

By taking enthalpy-an internal energy of a diffusion-type system-as the system state and expressing it in terms of the temperature profile and the phase-change interface position, the output feedback boundary control laws for a fundamentally nonlinear single-phase one-dimensional (1-D) PDE process model with moving boundaries, referred to as the Stefan problem, are developed. The control objective is tracking of the spatiotemporal temperature and temporal interface (solidification front) trajectory generated by the reference model. The external boundaries through which temperature sensing and heat flux actuation are performed are assumed to be solid. First, a full-state single-sided tracking feedback controller is presented. Then, an observer is proposed and proven to provide a stable full-state reconstruction. Finally, by combining a full-state controller with an observer, the output feedback trajectory tracking control laws are presented and the closed-loop convergence of the temperature and the interface errors proven for the single-sided and the two-sided Stefan problems. Simulation shows the exponential-like trajectory convergence attained by the implementable smooth bounded control signals.

6.
IEEE Control Syst Lett ; 7: 3765-3770, 2023.
Article in English | MEDLINE | ID: mdl-38292729

ABSTRACT

In this letter, we solve the problem of quantifying and mitigating control authority degradation in real time. Here, our target systems are controlled nonlinear affine-in-control evolution equations with finite control input and finite- or infinite-dimensional state. We consider two cases of control input degradation: finitely many affine maps acting on unknown disjoint subsets of the inputs and general Lipschitz continuous maps. These degradation modes are encountered in practice due to actuator wear and tear, hard locks on actuator ranges due to over-excitation, as well as more general changes in the control allocation dynamics. We derive sufficient conditions for identifiability of control authority degradation, and propose a novel real-time algorithm for identifying or approximating control degradation modes. We demonstrate our method on a nonlinear distributed parameter system, namely a one-dimensional heat equation with a velocity-controlled moveable heat source, motivated by autonomous energy-based surgery.

7.
Proc IEEE Conf Decis Control ; 2022: 5437-5442, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36776201

ABSTRACT

We present a novel 3D adaptive observer framework for use in the determination of subsurface organic tissue temperatures in electrosurgery. The observer structure leverages pointwise 2D surface temperature readings obtained from a real-time infrared thermographer for both parameter estimation and temperature field observation. We introduce a novel approach to decoupled parameter adaptation and estimation, wherein the parameter estimation can run in real-time, while the observer loop runs on a slower time scale. To achieve this, we introduce a novel parameter estimation method known as attention-based noise-robust averaging, in which surface thermography time series are used to directly estimate the tissue's diffusivity. Our observer contains a real-time parameter adaptation component based on this diffusivity adaptation law, as well as a Luenberger-type corrector based on the sensed surface temperature. In this work, we also present a novel model structure adapted to the setting of robotic surgery, wherein we model the electrosurgical heat distribution as a compactly supported magnitude- and velocity-controlled heat source involving a new nonlinear input mapping. We demonstrate satisfactory performance of the adaptive observer in simulation, using real-life experimental ex vivo porcine tissue data.

8.
Proc Am Control Conf ; 20212021 May.
Article in English | MEDLINE | ID: mdl-34366554

ABSTRACT

The first control-oriented model of the interaction of an electrosurgical probe with organic tissue, based on a 1-D PDE with a moving boundary, is introduced. To attain the desired electrosurgically-induced tissue changes using this model, a non-collocated output feedback moving boundary control law is proposed. The latter is realized through a novel non-collocated pointwise temperature-based state observer for the two-phase Stefan problem. Simulation demonstrates that the controller proposed meets the performance objective. The controller implementation is also discussed.

9.
Proc SIAM Conf Control Appl ; 2021: 9-16, 2021.
Article in English | MEDLINE | ID: mdl-35071662

ABSTRACT

This work presents a method of efficiently computing inner approximations of forward reachable sets for nonlinear control systems with diminished control authority, given an a priori computed reachable set for the nominal system. The method functions by shrinking a precomputed convex reachable set based on a priori knowledge of the system's trajectory deviation growth dynamics. The trajectory deviation growth dynamics determine an upper bound on the minimal deviation between two trajectories emanating from the same point that are generated by control inputs from the nominal and diminished set of control inputs, respectively. These growth dynamics are a function of a given Hausdorff distance bound between the nominal convex space of admissible controls and the possibly unknown impaired space of admissible controls. Because of its relative computational efficiency compared to direct computation of the off-nominal reachable set, this procedure can be applied to onboard fault-tolerant path planning and failure recovery. We consider the implementation of the approximation procedure by way of numerical integration and a root finding scheme, and we present two illustrative examples, namely an application to a control system with quadratic nonlinearities and aircraft wing rock dynamics.

10.
Energies (Basel) ; 13(7)2020 Apr.
Article in English | MEDLINE | ID: mdl-32582408

ABSTRACT

Chemical looping is a near-zero emission process for generating power from coal. It is based on a multi-phase gas-solid flow and has extremely challenging nonlinear, multi-scale dynamics with jumps, producing large dynamic model uncertainty, which renders traditional robust control techniques, such as linear parameter varying H ∞ design, largely inapplicable. This process complexity is addressed in the present work through the temporal and the spatiotemporal multiresolution modeling along with the corresponding model-based control laws. Namely, the nonlinear autoregressive with exogenous input model structure, nonlinear in the wavelet basis, but linear in parameters, is used to identify the dominant temporal chemical looping process dynamics. The control inputs and the wavelet model parameters are calculated by optimizing a quadratic cost function using a gradient descent method. The respective identification and tracking error convergence of the proposed self-tuning identification and control schemes, the latter using the unconstrained generalized predictive control structure, is separately ascertained through the Lyapunov stability theorem. The rate constraint on the control signal in the temporal control law is then imposed and the control topology is augmented by an additional control loop with self-tuning deadbeat controller which uses the spatiotemporal wavelet riser dynamics representation. The novelty of this work is three-fold: (1) developing the self-tuning controller design methodology that consists in embedding the real-time tunable temporal highly nonlinear, but linearly parametrizable, multiresolution system representations into the classical rate-constrained generalized predictive quadratic optimal control structure, (2) augmenting the temporal multiresolution loop by a more complex spatiotemporal multiresolution self-tuning deadbeat control loop, and (3) demonstrating the effectiveness of the proposed methodology in producing fast recursive real-time algorithms for controlling highly uncertain nonlinear multiscale processes. The latter is shown through the data from the implemented temporal and augmented spatiotemporal solutions of a difficult chemical looping cold flow tracking control problem.

SELECTION OF CITATIONS
SEARCH DETAIL