Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(10): 7088-7111, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414990

ABSTRACT

This study bio-synthesized Ag@SeO2 bmNPs successfully, using turmeric ethanol extract, and characterized them using various techniques. The FT-IR analysis reveals the involvement of these plant-derived compounds, especially phenolics, in the reduction process by acting as electron donors and stabilizing/capping agents. Zeta potential analysis showed a slight negative surface charge for the stability of Ag@SeO2 NPs, where TEM revealed spherical nanoparticles with an average size of 20 nm. The XRD confirmed crystallinity and a core-shell structure, and EDX identified elements consistent with Ag@SeO2 and a 3 : 1 Ag/Se atomic ratio. Further, SEM supported the spherical shape and uniform size. These findings highlight the successful biosynthesis of Ag@SeO2 bmNPs with promising properties for diverse applications. Moreover, the Box-Behnken design (BBD) and artificial neural network (ANN) model were engaged to optimize Ag@SeO2 bmNP biosynthesis. BBD identified significant influences of pH, bioconversion temperature, time, and turmeric concentration on bmNP yield, with adjusted R2 and predictive R2 being 0.9075 and 0.8829, respectively. However, its limitations were revealed by a significant lack of fit. ANN modeling with a 3-5-7-1 topology showed superior predictive accuracy and identified optimal conditions for maximizing yield (pH 9.83, 51.7 °C, 1.0 h, 3.71 mg mL-1 turmeric). Validation experiments confirmed the model's reliability. Turmeric extract exhibited significantly higher amounts of phenolics, and flavonoids compared to the bmNPs, suggesting its potential for strong antioxidant activity. Both turmeric extract and bmNPs displayed antioxidant activity in ABTS and DPPH assays, with turmeric extract being the most potent due to its curcuminoid content. The potential activity of Ag@SeO2 bmNPs against S. aureus, K. pneumonia, E. coli, and B. cereus was investigated, with inhibition zones ranging from 22 to 32 mm. The MIC values of tested NPs towards pathogenic bacteria ranged from 165.625 and 331.25 µg mL-1.

2.
Sci Rep ; 14(1): 4702, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409454

ABSTRACT

This study was divided into two parts. The first part, the determination of methicillin-resistant Staphylococcus aureus (MRSA) prevalence in 25 broiler chicken farms, with the detection of multidrug resistant MRSA strains. The prevalence of MRSA was 31.8% (159 out of 500 samples) at the level of birds and it was 27% (27 out of 100) in the environmental samples. The highest antimicrobial resistance of the recovered MRSA strains was recorded to streptomycin (96%). All isolates (100%) had multidrug resistance (MDR) to four or more antibiotics with 16 distinct antibiotic resistant patterns, and multiple antibiotic resistance index (MARI) of 0.4-1. The second part, implementing novel biocontrol method for the isolated multidrug resistant MRSA strains through the isolation of its specific phage and detection of its survival rate at different pH and temperature degrees and lytic activity with and without encapsulation by chitosan nanoparticles (CS-NPs). Encapsulated and non-encapsulated MRSA phages were characterized using transmission electron microscope (TEM). Encapsulation of MRSA phage with CS-NPs increasing its lytic activity and its resistance to adverse conditions from pH and temperature. The findings of this study suggested that CS-NPs act as a protective barrier for MRSA phage for the control of multidrug resistant MRSA in broiler chicken farms.


Subject(s)
Bacteriophages , Chitosan , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Chitosan/pharmacology , Staphylococcus aureus , Farms , Poultry , Chickens , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary
3.
Sci Rep ; 13(1): 3678, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36872381

ABSTRACT

In comparison to physicochemical and chemical methods, microbial dye biosorption is regarded as an eco-effective and economically viable alternative and is a widely applied method due to its high efficiency and compatibility with the environment. Therefore, the idea of this study is to clarify to what extent the viable cells and the dry biomass of Pseudomonas alcaliphila NEWG-2 can improve the biosorption of methylene blue (MB) from a synthetic wastewater sample. The array of Taguchi paradigm has been conducted to ascertain five variables affecting the biosorption of MB by broth forms of P. alcaliphila NEWG. The data of MB biosorption were familiar to the predicted ones, indicating the precision of the Taguchi model's prediction. The maximum biosorption of MB (87.14%) was achieved at pH 8, after 60 h, in a medium containing 15 mg/ml MB, 2.5% glucose, and 2% peptone, with sorting the highest signal-to-noise ratio (38.80). FTIR spectra detected various functional groups (primary alcohol, α, ß-unsaturated ester, symmetric NH2 bending, and strong C-O stretching) on the bacterial cell wall that participated in the biosorption of MB. Furthermore, the spectacular MB biosorption ability was validated by equilibrium isotherms and kinetic studies (the dry biomass form), which were derived from the Langmuir model (qmax = 68.827 mg/g). The equilibrium time was achieved in about 60 min, with 70.5% of MB removal. The biosorption kinetic profile might be adequately represented by pseudo-second order and Elovich models. The changes in the bacterial cells before and after the biosorption of MB were characterized using a scanning electron microscope. As realized from the aforementioned data, the bacterium is a talented, effective, eco-friendly, and low-cost bio-sorbent for the decolorization and remedy of an industrial effluent containing MB from an aqueous environment. The current outcomes in the biosorption of MB molecules promote the use of the bacterial strain as viable cells and/or dry biomass in ecosystem restoration, environmental cleanup, and bioremediation studies.


Subject(s)
Ecosystem , Methylene Blue , Kinetics , Biomass
4.
Mol Divers ; 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36840839

ABSTRACT

The entitled review aimed to assemble and highlight the synthetic approaches and biological aspects of heterocycles with pyridodipyrimidine motifs. The recent synthetic approaches were categorized according to the accomplishments of the approaches under catalyst or catalyst-free conditions. The topic involved the synthesis of substituted tricyclic systems and spirocyclic systems. The present study offered an overview of the recent literature in addition to a scope of the preceding literature. The proposed mechanisms of the varied target products were discussed. Pyridodipyrimidine displayed potential and privileged cytotoxic, antioxidant, and antimicrobial performances. The competitions, challenges, and prospects are also deliberated.

5.
RSC Med Chem ; 13(5): 522-567, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35694689

ABSTRACT

Heterocycles containing the pyranopyrimidine motif have attracted the interest of researchers in recent decades due to their ability to synthesize and explore at a large scale to explore the biological diversity. Therefore, this review highlights the biological characteristics and synthetic approaches adopted to prepare pyranopyrimidine analogs in the last five years. Several novel preparation procedures have been summarized to synthesize these compounds using ionic, basic, or nanocatalysts or catalyst-free conditions to obtain these compounds in good yields. Pyranopyrimidines could also be used as ligands in the preparation of metal complexes with increased biological potency. The different sections include the antimicrobial, antitubercular, antimalarial, antiviral "SARS-CoV-2 inhibitors", antidiabetic, antitumor, cytotoxic, antiinflammatory, antioxidant, anticoagulant, urease inhibitory activities, and tyrosine inhibitors. The results are discussed based on the structure-activity relationships (SARs) and the mechanism of action.

6.
Front Microbiol ; 13: 893603, 2022.
Article in English | MEDLINE | ID: mdl-35711743

ABSTRACT

The definitive screening design (DSD) and artificial neural network (ANN) were conducted for modeling the biosorption of Co(II) by Pseudomonas alcaliphila NEWG-2. Factors such as peptone, incubation time, pH, glycerol, glucose, K2HPO4, and initial cobalt had a significant effect on the biosorption process. MgSO4 was the only insignificant factor. The DSD model was invalid and could not forecast the prediction of Co(II) removal, owing to the significant lack-of-fit (P < 0.0001). Decisively, the prediction ability of ANN was accurate with a prominent response for training (R2 = 0.9779) and validation (R2 = 0.9773) and lower errors. Applying the optimal levels of the tested variables obtained by the ANN model led to 96.32 ± 2.1% of cobalt bioremoval. During the biosorption process, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, and scanning electron microscopy confirmed the sorption of Co(II) ions by P. alcaliphila. FTIR indicated the appearance of a new stretching vibration band formed with Co(II) ions at wavenumbers of 562, 530, and 531 cm-1. The symmetric amino (NH2) binding was also formed due to Co(II) sorption. Interestingly, throughout the revision of publications so far, no attempt has been conducted to optimize the biosorption of Co(II) by P. alcaliphila via DSD or ANN paradigm.

7.
RSC Adv ; 12(19): 11808-11842, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481073

ABSTRACT

Heterocyclic compounds incorporated with a pyranopyrimidine skeleton have received substantial consideration owing to their privileged, and intelligible biodiversity. Accordingly, this review highlights the multicomponent synthetic routes adopted to prepare heterocyclic compounds incorporated with the pyrano[2,3-d]pyrimidine skeleton in the preceding two years. The different sections comprise the synthesis of bicyclic, tricyclic, polycyclic, and spirocyclic systems along with the estimation of the probable mechanistic routes for the reaction pathways. Commonly, the pyran ring closure was the major idea of most studies, and the mechanistic pathways of these reactions involved Knoevenagel condensation, Michael addition, and intramolecular cyclocondensation. Besides, the significant biological potency of the compounds recently synthesized from multicomponent reactions is deliberated.

8.
Sci Rep ; 11(1): 20908, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686690

ABSTRACT

Remazol brilliant blue (RBB) is an anthraquinone anionic dye that has several commercial uses, especially in the textile industries and is well-known for its detrimental impacts on marine life and the surrounding ecosystem. Mercury (Hg2+) is also one of the most severe hazardous environmental contaminants due to its bioaccumulation through the food chain and high toxicity to the human embryo and fetus. The biosorption potential of Gelidium corneum biomass for bioremoval of Hg2+ and RBB dye simultaneously from binary mixture was assessed. The effects of initial pH, contact time, Hg2+, RBB, and biomass concentrations on the biosorption process were investigated in 50 batch experiments using a Face-centered central composite design. The maximum removal percentage of Hg2+ (98.25%) was achieved in the run no. 14, under optimum experimental conditions: 200 mg/L Hg2+, 75 mg/L RBB, pH 5. At 30 °C, 4 g/L algal biomass was used, with a contact time of 180 min. Whereas, the maximum removal percentage of RBB (89.18%) was obtained in the run no. 49 using 200 mg/L Hg2+, 100 mg/L RBB, pH 5, 4 g/L algal biomass and 180 min of contact time. FTIR analysis of Gelidium corneum biomass surface demonstrated the presence of many functional groups that are important binding sites responsible for Hg2+ and RBB biosorption. SEM analysis showed apparent morphological alterations including surface shrinkage and the appearance of new shiny adsorbate ion particles on the Gelidium corneum biomass surface after the biosorption process. The EDX study reveals an additional optical absorption peak for Hg2+, confirming the role of Gelidium corneum biomass in Hg2+ biosorption. In conclusion, Gelidium corneum biomass has been shown to be an eco-friendly, sustainable, promising, cost-effective and biodegradable biosorbent to simultaneously biosorb Hg2+ and RBB dye from aquatic ecosystems.

9.
Biomolecules ; 11(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33809976

ABSTRACT

The current work aimed to synthesize selenium and zinc nanoparticles using the aqueous extract of Ephedra aphylla as a valuable medicinal plant. The prepared nanoparticles were characterized by TEM, zeta potential, and changes in the phytochemical constituents. Hence, the phenolic, flavonoid, and tannin contents were reduced in the case of the prepared samples of nanoparticles than the original values in the aqueous extract. The prepared extract of Ephedra aphylla and its selenium and zinc nanoparticles showed high potency as antioxidant agents as a result of the DPPH• assay. The samples were assessed as anticancer agents against six tumor cells and a normal lung fibroblast (WI-38) cell line. The selenium nanoparticles of Ephedra aphylla extract revealed very strong cytotoxicity against HePG-2 cells (inhibitory concentration (IC50) = 7.56 ± 0.6 µg/mL), HCT-116 cells (IC50 = 10.02 ± 0.9 µg/mL), and HeLa cells (IC50 = 9.23 ± 0.8 µg/mL). The samples were evaluated as antimicrobial agents against bacterial and fungal strains. Thus, selenium nanoparticles showed potent activities against Gram-negative strains (Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), Gram-positive strains (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermidis), and the fungal strain Candida albicans. In conclusion, the preparation of nanoparticles of either selenium or zinc is crucial for improved biological characteristics.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Ephedra/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Zinc/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Candida albicans/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
10.
Molecules ; 26(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671833

ABSTRACT

Our present study was designed to investigate the role of both Trichoderma harzianum and chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect of T. harzianum against P. ultimum reached 81.6% after 120 h. Data also showed the productivity of total phenolics and total flavonoids by T. harzianum, was 12.18 and 6.33 mg QE/100 mL culture filtrate, respectively. However, these compounds were determined in chamomile flower extract at concentrations of 75.33 and 24.29 mg QE/100 mL, respectively. The fractionation of aqueous extract of chamomile flower using HPLC provided several polyphenolic compounds such as pyrogallol, myricetin, rosemarinic acid, catechol, p-coumaric acid, benzoic acid, chlorogenic acid and other minor compounds. In vivo, the potentiality of T. harzianum with chamomile flower extract against Pythium pathogen of bean was investigated. Data obtained showed a reduction in the percentage of rotted seed and infected seedling up to 28 and 8%, respectively. Whereas, the survival increased up to 64% compared to other ones. There was also a significant promotion in growth features, total chlorophyll, carotenoids, total polyphenols and flavonoids, polyphenol-oxidase and peroxidase enzymes compared to other ones. To the best of our knowledge, there are no reported studies that included the mutual association of fungus, T. harzianum with the extract taken from the chamomile flower against P. ultimum, either in vitro or in vivo. In conclusion, the application of both T. harzianum and/or M. chamomilla extracts in the control of bean Pythium pathogen showed significant results.


Subject(s)
Chamomile/chemistry , Flavonoids/pharmacology , Flowers/chemistry , Hypocreales/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Pythium/drug effects , Flavonoids/chemistry , Flavonoids/isolation & purification , Hypocreales/metabolism , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Pythium/growth & development , Pythium/pathogenicity
11.
Poult Sci ; 100(2): 675-684, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518121

ABSTRACT

In the present study, 200 Brown commercial egg-type layers (60 wk old) were used to study the effects of different levels of ecofriendly synthesis of calcium (Ca) nanoparticles (0.0, 0.50, 1.0, and 1.5 g/kg diet) with biocompatible Sargassum latifolium algae extract (SL-CaNps) on exterior egg quality traits, electronic microscopic view of eggshells, Ca and phosphorus (P) retention, serum Ca and P concentrations, and the histology of the uterus. Hens fed with dietary SL-CaNps powder had higher egg weight and shell weight % values than those of the control group. All SL-CaNps treatment groups had the greatest values of shell weight per unit surface area and shell thickness. Dietary supplementation of SL-CaNps at graded levels up to 1.5 g/kg diet had higher serum Ca and inorganic P levels than that of the control. Laying hens fed with SL-CaNps-added diets had beneficial effects on shell ultrastructure in terms of well-developed palisade and mammillary layers. The numbers of apical cells along the branched tubular gland were greater in SL-CaNps-treated groups than those of control. Conclusively, supplementing SL-CaNps powder up to 1.5 g/kg to the diet of laying hens improved eggshell thickness, shell weight% and shell weight per unit surface and has no adverse effect on their eggshell quality or electronic microscopic view of their eggshell.


Subject(s)
Calcium/administration & dosage , Chickens/physiology , Egg Shell/ultrastructure , Eggs/standards , Nanoparticles , Sargassum/chemistry , Age Factors , Animal Feed/analysis , Animals , Chickens/anatomy & histology , Diet/veterinary , Dietary Supplements , Female , Microscopy, Electron, Scanning/veterinary , Microscopy, Electron, Transmission/veterinary , Random Allocation , Spectrophotometry, Ultraviolet/methods , Spectrophotometry, Ultraviolet/veterinary
12.
Sci Rep ; 11(1): 1717, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462359

ABSTRACT

Heavy metals, including chromium, are associated with developed industrialization and technological processes, causing imbalanced ecosystems and severe health concerns. The current study is of supreme priority because there is no previous work that dealt with the modeling of the optimization of the biosorption process by the immobilized cells. The significant parameters (immobilized bacterial cells, contact time, and initial Cr6+ concentrations), affecting Cr6+ biosorption by immobilized Pseudomonas alcaliphila, was verified, using the Plackett-Burman matrix. For modeling the maximization of Cr6+ biosorption, a comparative approach was created between rotatable central composite design (RCCD) and artificial neural network (ANN) to choose the most fitted model that accurately predicts Cr6+ removal percent by immobilized cells. Experimental data of RCCD was employed to train a feed-forward multilayered perceptron ANN algorithm. The predictive competence of the ANN model was more precise than RCCD when forecasting the best appropriate wastewater treatment. After the biosorption, a new shiny large particle on the bead surface was noticed by the scanning electron microscopy, and an additional peak of Cr6+ was appeared by the energy dispersive X-ray analysis, confirming the role of the immobilized bacteria in the biosorption of Cr6+ ions.


Subject(s)
Chromium/analysis , Neural Networks, Computer , Pseudomonas/chemistry , Adsorption , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Chromium/chemistry , Ions/chemistry , Pseudomonas/metabolism , Regression Analysis , Spectrometry, X-Ray Emission , Surface Properties , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
14.
Sci Rep ; 10(1): 14043, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820181

ABSTRACT

Chromium is one of the heavy metal pollutants that causing risky health issues when discharged into the aquatic ecosystems. The current investigation focused on the bioremoval of Cr6+ depending on the bacterial sorption process by using Pseudomonas sp. NEWG-2 which was identified on the basis of morphological, cultural characteristics, 16S rRNA sequencing and phylogenetic analysis as Pseudomonas alcaliphila strain NEWG-2. It is clear from the FCCD experiments that the bacterium can grow normally and remove 96.60% of 200 mg/l of Cr6+ using yeast extract (5.6 g/l), glucose (4.9 g/l), pH (7) for 48 h incubation period. SEM and EDS analyses proved that the Cr6+ was biosorbed by P. alcaliphila NEWG-2. FTIR spectra indicated that the phenolic, carbonyl ester, acetyl, carboxylate, alkanes and carbonyl were the main groups involved in the chromium biosorption. Of the equilibrium isotherms models, the Langmuir model was more obedient, with a maximum uptake (qmax) of 10 mg/g (bacterial-alginate beads), than the Freundlich one. The findings reveal the efficiency of P. alcaliphila NEWG-2 in Cr6+ biosorption, with feasibility in the treatment of chromium-contaminated water as a green-technology tool. Interestingly, to the best of our knowledge, this is the first report on Cr6+ biosorption process by P. alcaliphila.


Subject(s)
Biodegradation, Environmental , Chromium/metabolism , Costs and Cost Analysis , Pseudomonas/metabolism , Water Pollutants, Chemical/metabolism , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Water Purification/methods
15.
Sci Rep ; 10(1): 9491, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528020

ABSTRACT

Heavy metals are environmental pollutants affect the integrity and distribution of living organisms in the ecosystem and also humans across the food chain. The study targeted the removal of copper (Cu2+) from aqueous solutions, depending on the biosorption process. The bacterial candidate was identified using 16S rRNA sequencing and phylogenetic analysis, in addition to morphological and cultural properties as Azotobacter nigricans NEWG-1. The Box-Behnken design was applied to optimize copper removal by Azotobacter nigricans NEWG-1 and to study possible interactive effects between incubation periods, pH and initial CuSO4 concentration. The data obtained showed that the maximum copper removal percentage of 80.56% was reached at run no. 12, under the conditions of 200 mg/L CuSO4, 4 days' incubation period, pH, 8.5. Whereas, the lowest Cu2+ removal (12.12%) was obtained at run no.1. Cells of Azotobacter nigricans NEWG-1 before and after copper biosorption were analyzed using FTIR, EDS and SEM. FTIR analysis indicates that several functional groups have participated in the biosorption of metal ions including hydroxyl, methylene, carbonyl, carboxylate groups. Moreover, the immobilized bacterial cells in sodium alginate-beads removed 82.35 ± 2.81% of copper from the aqueous solution, containing an initial concentration of 200 mg/L after 6 h. Azotobacter nigricans NEWG-1 proved to be an efficient biosorbent in the elimination of copper ions from environmental effluents, with advantages of feasibility, reliability and eco-friendly.

16.
Environ Sci Pollut Res Int ; 27(24): 30716-30728, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32468379

ABSTRACT

Recent developments in the nanotechnology field have created opportunities to design new biomaterials for Staphylococcus aureus biofilm eradication. These biomaterials including disinfectant-loaded nanoparticles could overcome the limitations of conventional disinfectants. The objective of this study was to assess the biocidal activity of five commercial disinfectants (DC&R®, VirkonS®, TH4++, Tek-Trol, and peracetic acid) alone and as with silver and copper nanocomposites on S. aureus biofilm at different concentrations and exposure times. Consequently, 227 samples were collected from two broiler farms, two-layer farms, and three abattoirs at El-Dakahlia Province, Egypt, during summer 2018. The samples were collected from birds as well as the surrounding environment. S. aureus strains were isolated and biofilm producers were phenotypically evaluated by Congo red agar (CRA) test. Besides, 4 biofilm-associated genes including bap, fnbA, cna, and ebps were genotypically detected by PCR technology. Out of 227 collected samples, 141 (62.1%) strains were identified as S. aureus, while 127 strains (90.1%) were S. aureus biofilm producers for all examined samples except for hand swabs of abattoir workers. The prevalence of fnbA and bap genes was 79.5% (101/127) and 20.5% (26/127), respectively but, no strains harbored cna or ebps genes. Tested nanocomposites were prepared using an aqueous solution of metal salts such as copper sulfate and silver nitrate and added to the same amount of disinfectant solution. The obtained nanocomposites were characterized by transmission electron microscopy (TEM) and zeta potential which showed spherical and elongated particles and with a surface charge of disinfectants-silver and copper nanocomposites-of 2.92 and 3.43 mV, respectively. Complete eradication of S. aureus biofilm was observed after treatment with disinfectants loaded onto silver (AgNPs) and copper (CuNPs) nanoparticles in varying concentrations as well as at different exposure times in comparing to disinfectants alone. Our results exhibited the potential applications of disinfectant nanocomposites in complete eradication of S. aureus biofilm in farms and abattoirs without developing of disinfectant resistant bacteria.


Subject(s)
Disinfectants , Metal Nanoparticles , Nanoparticles , Abattoirs , Animals , Biofilms , Chickens , Copper , Egypt , Farms , Humans , Poultry , Staphylococcus aureus
17.
Foods ; 9(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403280

ABSTRACT

The aim of this study was to evaluate fig (Ficus carica L.) leaves' extract (FLE), olive (Olea europaea L.) leaves' extract (OLE), and their mixture (MLE), to extend the shelf life of pasteurized milk. OLE, FLE, and their mixture MLE (1:1) were added to the pasteurized milk in different concentrations (0.2%, 0.4%, and 0.6%). Several tests were then conducted to determine the activity of these extracts. The antioxidant activity as IC50 was determined by using DPPH radical assay. FLE showed higher IC50 (30.21 µg/mL) compared to the IC50 of OLE (22.43 µg/mL). Phenolic compounds were identified by using high-performance liquid chromatography (HPLC). The highest antimicrobial activity was obtained with 0.6% concentration. Organoleptic properties indicated that the addition of these extracts did not affect the sensory properties of pasteurized milk. Pasteurized milk treated with 0.6% of FLE, OLE, and MLE has significantly decreased (p ≤ 0.05) lipase and protease activity during the storage period, at 5 °C. The results indicated that extending the shelf life of pasteurized milk from 5 to 16 days was successfully achieved through using 0.6% of FLE, OLE, and MLE. The combination of the two extracts (MLE) provides an efficient and safe method to prolong the shelf life of pasteurized milk, without altering the properties of pasteurized buffalo milk.

18.
Foods ; 8(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018544

ABSTRACT

Green synthesis of metal nanoparticles using plant extracts offers a safe and attractive alternate to the chemical methods. The present work aims at preparing metal nanoparticles of rhus (Rhus coriaria L.) and safflower (Carthamus tinctorius L.) extracts using Fe2+, Cu2+, Zn2+, and Ag+ ions. The water extracts were prepared, and the total polyphenols and flavonoids contents were determined. The safflower extract contained the highest number of total polyphenols and total flavonoids (87.20 mg GAE/g and 36.32 mg QE/g), respectively. The synthesized nanoparticles were characterized using UV-Visible (UV-Vis) spectroscopy and Transmission Electron Microscope (TEM). The studied extracts and their nanoparticles were evaluated as an antioxidant, antimicrobial, and anticancer agents. The plant extracts and their nanoparticles showed significant antioxidant activity using (3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assays. Safflower silver nanoparticles (AgNPs) were the most powerful antimicrobial agent compared to the other nanoparticles. The Sulforhodamine B (SRB) cytotoxic activity was evaluated against three cancer cell lines. The results revealed that CuNP safflower nanoparticles displayed the highest activity as anticancer agent with values (98.94% with T47D, 97.68% with HEPG2, and 89.33% against Caco-2). The data revealed that rhus and safflower extracts and their nanoparticles possess high potential activity as antimicrobial, antioxidant, and anticancer agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...