Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37560809

ABSTRACT

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

2.
EMBO Mol Med ; 15(9): e16858, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37490001

ABSTRACT

Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic ß cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from ß cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting ß cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on ß cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.


Subject(s)
Insulin-Secreting Cells , Humans , Insulin Secretion , Insulin/metabolism , Blood Platelets , Glucose/metabolism
3.
Biochem Biophys Res Commun ; 612: 119-125, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35523049

ABSTRACT

Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.


Subject(s)
Diabetes Mellitus , Protein Serine-Threonine Kinases , Animals , Intracellular Signaling Peptides and Proteins , Mice , Mitogen-Activated Protein Kinase 6/metabolism , Obesity
4.
FASEB J ; 35 Suppl 12021 05.
Article in English | MEDLINE | ID: mdl-34318951

ABSTRACT

Withdrawal: Valeria Lopez Salazar, Rhoda Anane Karikari, Lun Li, Rabih El-Merahbi, Maria Troullinaki, Moya Wu, Tobias Wiedemann, Alina Walth, Manuel Gil Lozano, Maria Rohm, Stephan Herzig, Anastasia Georgiadi. Adipocyte Deletion of ADAM17 Leads to Insulin Resistance in Association with Age and HFD in Mice (2021). The FASEB Journal. 35:s1. doi: 10.1096/fasebj.2021.35.S1.00447. The above abstract, published online on May 14, 2021 in Wiley Online Library (wileyonlinelibrary.com), has been withdrawn by agreement between the authors, FASEB, and Wiley Periodicals Inc. The withdrawal is due to a request made by the authors prior to publication. The Publisher apologizes that this abstract was published in error.

5.
EMBO Mol Med ; 13(5): e13548, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33949105

ABSTRACT

Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.


Subject(s)
Chylomicrons , Lipid Metabolism , Animals , Chylomicrons/metabolism , Humans , Intestines , Mice , Obesity , Protein Kinase D2 , Protein Kinases , Triglycerides
6.
Sci Rep ; 11(1): 1979, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479343

ABSTRACT

Paternal obesity is known to have a negative impact on the male's reproductive health as well as the health of his offspring. Although epigenetic mechanisms have been implicated in the non-genetic transmission of acquired traits, the effect of paternal obesity on gene expression in the preimplantation embryo has not been fully studied. To this end, we investigated whether paternal obesity is associated with gene expression changes in eight-cell stage embryos fathered by males on a high-fat diet. We used single embryo RNA-seq to compare the gene expression profile of embryos generated by males on a high fat (HFD) versus control (CD) diet. This analysis revealed significant upregulation of the Samd4b and Gata6 gene in embryos in response to a paternal HFD. Furthermore, we could show a significant increase in expression of both Gata6 and Samd4b during differentiation of stromal vascular cells into mature adipocytes. These findings suggest that paternal obesity may induce changes in the male germ cells which are associated with the gene expression changes in the resulting preimplantation embryos.


Subject(s)
Epigenesis, Genetic , GATA6 Transcription Factor/genetics , Obesity/genetics , Repressor Proteins/genetics , Transcriptome/genetics , Animals , Blastocyst/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Embryo, Mammalian , Embryonic Development/genetics , Fathers , Gene Expression Regulation/genetics , Genome, Human/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/pathology , RNA-Seq
7.
Genes Dev ; 34(7-8): 495-510, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32139423

ABSTRACT

Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Energy Metabolism/genetics , Lipolysis/genetics , Mitogen-Activated Protein Kinase 6/genetics , Mitogen-Activated Protein Kinase 6/metabolism , Obesity/complications , 3T3 Cells , Adipose Tissue/enzymology , Animals , Diabetes Mellitus, Type 2/drug therapy , Drug Evaluation, Preclinical , Forkhead Box Protein O1/metabolism , Gene Deletion , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics
8.
Sci Signal ; 12(593)2019 08 06.
Article in English | MEDLINE | ID: mdl-31387939

ABSTRACT

Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.


Subject(s)
Cholesterol/biosynthesis , Hepatocytes/metabolism , Insulin/metabolism , Protein Kinase C/metabolism , Signal Transduction , Triglycerides/biosynthesis , Animals , Cholesterol/genetics , Insulin/genetics , Lipogenesis/genetics , Mice , Mice, Transgenic , Protein Kinase C/genetics , Triglycerides/genetics
9.
EMBO J ; 37(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30389661

ABSTRACT

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Subject(s)
Adipocytes/metabolism , Adiposity , Energy Metabolism , Fatty Liver/metabolism , Obesity/metabolism , Protein Kinase C/metabolism , Subcutaneous Fat/metabolism , 3T3-L1 Cells , Adipocytes/pathology , Animals , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Female , Humans , Male , Mice , Mice, Mutant Strains , Obesity/genetics , Obesity/pathology , Protein Kinase C/genetics , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Second Messenger Systems/genetics , Subcutaneous Fat/physiology
10.
Sci Rep ; 7(1): 7191, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775290

ABSTRACT

Adipocytes play a central role in maintaining metabolic homeostasis in the body. Differentiation of adipocyte precursor cells requires the transcriptional activity of peroxisome proliferator-activated receptor-γ (Pparγ) and CCAAT/enhancer binding proteins (C/Ebps). Transcriptional activity is regulated by signaling modules activated by a plethora of hormones and nutrients. Mechanistic target of rapamacin complexes (mTORC) 1 and 2 are central for the coordination of hormonal and nutritional inputs in cells and are essential for adipogenesis. Serum glucocorticoid kinase 1 (Sgk1)-dependent phosphorylation of N-Myc downstream-regulated gene 1 (Ndrg1) is a hallmark of mTORC2 activation in cells. Moreover, Pparγ activation promotes Ndrg1 expression. However, the impact of Ndrg1 on adipocyte differentiation and function has not yet been defined. Here, we show that Ndrg1 expression and its Sgk1-dependent phosphorylation are induced during adipogenesis. Consistently, we demonstrate that Ndrg1 promotes adipocyte differentiation and function by inducing Pparγ expression. Additionally, our results indicate that Ndrg1 is required for C/Ebpα phosphorylation. Moreover, we found that Ndrg1 phosphorylation by Sgk1 promotes adipocyte formation. Taken together, we show that induction of Ndrg1 expression by Pparγ and its phosphorylation by Sgk1 kinase are required for the acquisition of adipocyte characteristics by precursor cells.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis/genetics , Cell Cycle Proteins/genetics , Cell Differentiation/genetics , Intracellular Signaling Peptides and Proteins/genetics , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Cycle Proteins/metabolism , Gene Expression , Gene Knockdown Techniques , Immediate-Early Proteins/metabolism , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism , Mice , Mutation , PPAR gamma/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics
11.
PLoS One ; 11(6): e0157607, 2016.
Article in English | MEDLINE | ID: mdl-27299737

ABSTRACT

Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1-/- and Pld2-/- mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.


Subject(s)
Appetite , Overweight/genetics , Overweight/physiopathology , Phospholipase D/genetics , Animals , Eating , Fatty Acids/blood , Fatty Acids/metabolism , Female , Gene Deletion , Gene Expression Regulation , Glucose Intolerance/blood , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/physiopathology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Insulin Resistance , Male , Mice , Overweight/blood , Overweight/metabolism , Phospholipase D/metabolism
12.
Front Neurosci ; 9: 442, 2015.
Article in English | MEDLINE | ID: mdl-26635517

ABSTRACT

BACKGROUND: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. METHODS: Metformin and 9-ß-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) cell lines. RESULTS: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. CONCLUSION: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

13.
PLoS One ; 10(10): e0139939, 2015.
Article in English | MEDLINE | ID: mdl-26430881

ABSTRACT

The placenta, a transient organ in human, is essential for pregnancy maintenance and for fetal growth and development. Trophoblast and stromal cells are the main cell types present in human placenta. Trophoblast cells are present in different subtypes depending on their differentiation state and their temporal and spatial location during pregnancy. The stromal cells are of extraembryonic mesenchymal origin and are important for villous formation and maintenance. Interestingly, many pregnancy-related diseases are associated with defect in trophoblast differentiation and villous integrity. Therefore, it's crucial to specifically identify each type of placental cells using specific markers. Keratins (CK) are widely used as marker of epithelial cells, cancer origin identification and in some cases as marker of stem/progenitor cells. Vimentin is widely used as marker of mesenchymal cells. The aim of this study is to characterize the presence of different keratins in human trophoblast cells and vimentin in stromal cells. Using immunohistochemistry on term placental sections, our results show that vimentin is solely expressed in stromal-mesenchymal cells while keratins 5, 7, 8, 14 and 19 are expressed in trophoblast cells. Interestingly, all keratins tested, except for keratin 14, were evenly expressed in all trophoblast cells. Keratin 14 was expressed in a subset of CK7 positive cells. Moreover, the same results were obtained when using freshly isolated cytotrophoblast cells or BeWo cells. In conclusion, this study is a crucial step in the advancement of our knowledge in placental cell type identification and characterization.


Subject(s)
Keratin-14/metabolism , Trophoblasts/metabolism , Cadherins/metabolism , Cell Line, Tumor , Choriocarcinoma/metabolism , Choriocarcinoma/pathology , Female , Humans , Keratin-7/metabolism , Pregnancy , Trophoblasts/cytology , Vimentin/metabolism
14.
FEBS Lett ; 589(15): 1728-34, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26070423

ABSTRACT

Metabolic homeostasis in the organism is assured both by the nervous system and by hormones. Among a plethora of hormones regulating metabolism, serotonin presents a number of unique features. Unlike classical hormones serotonin is produced in different anatomical locations. In brain it acts as a neurotransmitter and in the periphery it can act as a hormone, auto- and/or paracrine factor, or intracellular signaling molecule. Serotonin does not cross the blood-brain barrier; therefore the two major pools of this bioamine remain separated. Although 95% of serotonin is produced in the periphery, its functions have been ignored until recently. Here we review the impact of the peripheral serotonin on the regulation of function of the organs involved in glucose and lipid homeostasis.


Subject(s)
Energy Metabolism , Homeostasis , Serotonin/biosynthesis , Adipose Tissue/physiology , Animals , Gluconeogenesis/physiology , Glucose/metabolism , Hepatocytes/metabolism , Humans , Immune System/cytology , Immune System/physiology , Islets of Langerhans/physiology , Metabolic Diseases/drug therapy , Serotonin/therapeutic use
15.
PLoS One ; 9(11): e112453, 2014.
Article in English | MEDLINE | ID: mdl-25380390

ABSTRACT

Cancer stem cells (CSCs), including those of advanced prostate cancer, are a suggested reason for tumor resistance toward conventional tumor therapy. Therefore, new therapeutic agents are urgently needed for targeting CSCs. Despite the minimal understanding of their modes of action, natural products and herbal therapies have been commonly used in the prevention and treatment of many cancers. Berberis libanotica Ehrenb (BLE) is a plant rich in alkaloids which may possess anti-cancer activity and a high potential for eliminating CSCs. We tested the effect of BLE on prostate cancer cells and our data indicated that this extract induced significant reduction in cell viability and inhibited the proliferation of human prostate cancer cell lines (DU145, PC3 and 22Rv1) in a dose- and time-dependent manner. BLE extract induced a perturbation of the cell cycle, leading to a G0-G1 arrest. Furthermore, we noted 50% cell death, characterized by the production of high levels of reactive oxidative species (ROS). Inhibition of cellular migration and invasion was also achieved upon treatment with BLE extract, suggesting a role in inhibiting metastasis. Interestingly, BLE extract had a major effect on CSCs. Cells were grown in a 3D sphere-formation assay to enrich for a population of cancer stem/progenitor cells. Our results showed a significant reduction in sphere formation ability. Three rounds of treatment with BLE extract were sufficient to eradicate the self-renewal ability of highly resistant CSCs. In conclusion, our results suggest a high therapeutic potential of BLE extract in targeting prostate cancer and its CSCs.


Subject(s)
Antineoplastic Agents/pharmacology , Berberis/chemistry , Neoplastic Stem Cells/drug effects , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Homeodomain Proteins/genetics , Humans , Male , Nanog Homeobox Protein , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Plant Roots/chemistry , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...