Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 403: 123575, 2021 02 05.
Article in English | MEDLINE | ID: mdl-32791477

ABSTRACT

Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.


Subject(s)
Coloring Agents , Wastewater , Basidiomycota , Biodegradation, Environmental , Biofuels , Lignin , Lipids , Saccharomycetales , Textile Industry , Textiles
2.
Bioresour Technol ; 310: 123462, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32388355

ABSTRACT

In the present study, a halophilic microalgal species was isolated from a hypersaline lagoon with salinity average of 45.3‰ and identified as Dunaliella salina KSA-HS022. It was further cultivated at a salinity range of 50-250‰, applied directly to batch cultures or through stepwise increase in a semi-continuous culture. The later showed the highest biomass productivity of 0.191 g L-1 d-1 at 125‰, which represented 45.8% higher than the corresponding batch culture (control). Oxidative markers in the control cultures were significantly higher than those of the adapted culture, confirming reduction of oxidative stress by adaptation. In addition, stepwise adaptation showed the highest lipid productivity of 56.5 mg L-1 d-1 at 150‰ (39.9% higher than the corresponding control), which resulted in the highest fatty acid methyl esters productivity. Moreover, stepwise increase of salinity up to 150‰ enhanced the biodiesel characteristics, offering a new route for enhanced biodiesel production at extraordinary salinity levels.


Subject(s)
Biofuels , Microalgae , Batch Cell Culture Techniques , Biomass , Salinity
3.
Environ Toxicol Pharmacol ; 16(3): 169-78, 2004 Apr.
Article in English | MEDLINE | ID: mdl-21782704

ABSTRACT

Growth, morphological changes, amino acid composition, total soluble protein, and protein electrophoretic pattern were monitored for Scenedesmus obliquus and Nitzschia perminuta grown in the presence of different concentrations of Co(2+) and Ni(2+). Lower concentrations of cobalt stimulated the dry mass production and total soluble protein content of the two algae, whereas higher concentrations were inhibitory. Generally, N. perminuta showed more tolerance to the phytotoxicity of the two metals than S. obliquus and more tolerance to nickel than cobalt. However, S. obliquus seems to be more tolerant to cobalt than nickel. Cobalt and nickel have induced an increase in cell volume, change and disorder in cell shape. The increase in cell volume was much observed in Ni(2+) treated cells. At the same time, the two metals did not induce any distinct morphological abnormalities in N. perminuta. Co(2+) has stimulated the biosynthesis of all free amino acids in S. obliquus, except aspartic acid and phenylalanine, whereas Ni(2+) caused 22% inhibition in the content of total free amino acids, except cystine and arginine. On the other hand, Co(2+) has reduced the content of free amino acids in N. perminuta, except cystine, methionine, valine, and lysine. On the other hand, Ni(2+) stimulated the biosynthesis of glycine, alanine and histidine and highly stimulated valine and sulphur containing amino acids (cystine and methionine) in N. perminuta. High cobalt concentration (4ppm) resulted in the disappearance of 28.7kDa protein, 3.5ppm Ni(2+) stimulated the appearance of 18 and 20kDa proteins in S. Obliquus, while 37kDa proteins disappeared from N. perminuta treated with high doses of Co(2+) and Ni(2+).

SELECTION OF CITATIONS
SEARCH DETAIL