Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 134688, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39137856

ABSTRACT

CircRNAs have been increasingly appreciated as modulators of osteoporosis. This study investigated the expression of circ-0091579 and circ-HIPK3 in PBMCs of postmenopausal women with osteopenia and osteoporosis, aiming to underline their molecular mechanisms involved in pathogenesis of the disease. Seventy patients were stratified into two groups: 35 with osteopenia and 35 with osteoporosis, along with 30 healthy controls. Expressions of circ-0091579 and circ-HIPK3, miR-1225-5p and miR-338-3p, together with NF-κB, were assessed using RT-PCR. Keap1, Nrf2, and MAFB were determined using Western blot, while RANKL, OPG, IL-1ß, and IL-6 were measured by ELISA. GSH and MDA were estimated colorimetrically. Data revealed that circ-0091579 was markedly upregulated, whereas miR-1225-5p was downregulated in patients relative to controls. Additionally, circ-HIPK3 was significantly decreased, while miR-338-3p was increased in the diseased groups. Circ-0091579 was directly correlated with RANKL/OPG, NF-κB, IL-1ß, IL-6 and MDA, while inversely correlated with miR-1225-5p, T-score, BMD and GSH. Meanwhile, circ-HIPK3 and miR-338-3p were interrelated in an opposite manner. Eventually, the interplay among these downstream players induced an imbalance in bone homeostasis, triggering osteoporosis. Notably, these circRNAs differentiated patients from controls and those with osteopenia from osteoporotic ones. Thus, they could serve as biomarkers for early detection and tracking of osteoporosis.

2.
BMC Med Genomics ; 16(1): 204, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644537

ABSTRACT

BACKGROUND: The genetic architecture of rheumatoid arthritis (RA) and osteoarthritis (OA) are still unclear. Although RA and OA have quite different causes, they share synovial inflammation, risk factors, and some disease-associated genes, including the integrin subunit ß2 (ITGB2)/CD18 gene involved in extracellular matrix interactions and immune cell signaling. However, the functional role of ITGB2 genetic variants, its circulating expression pattern, and their clinical usefulness in RA and OA remain unexplored. Our study appraised the association of ITGB2 rs2070946 single nucleotide polymorphism with the vulnerability to RA and OA and its influence on ITGB2 mRNA expression, along with the potential of serum ITGB2 expression in RA and OA diagnosis. METHODS: This study included 70 RA patients, 70 primary OA patients, and 60 healthy volunteers. Genotyping and gene expression analysis were performed using qPCR. Bioinformatics analysis was employed to construct the protein-protein interaction (PPI) network of ITGB2. RESULTS: Serum ITGB2 mRNA expression was upregulated in both RA and OA compared to healthy controls. ITGB2 rs2070946 was associated with escalating risk of both diseases. RA patients harboring the rs2070946 CC or TC + CC genotypes had higher serum ITGB2 expression than the TT genotype carriers. Likewise, OA patients having the minor homozygote CC genotype had higher serum ITGB2 expression than those carrying the TT, TC or TT + TC genotypes. Serum ITGB2 expression showed profound diagnostic potential for RA and OA in receiver-operating characteristic analysis. In RA, serum ITGB2 expression positively correlated with rheumatoid factor and disease activity score 28 (DAS28). The ITGB2-PPI network enriched in cell-cell adhesion, ICAM-3 receptor activity, T-cell activation, leukocyte adhesion, complement binding, and NF-κB, tumor necrosis factor, and interleukin signaling pathways. CONCLUSION: These findings embrace the impact of ITGB2 rs2070946 as a novel genetic biomarker of both RA and OA, which could alter the ITGB2 expression. Serum ITGB2 expression could aid in timely diagnosis of RA and OA.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Humans , CD18 Antigens/genetics , Egypt , Arthritis, Rheumatoid/genetics , Osteoarthritis/genetics , Polymorphism, Single Nucleotide , RNA, Messenger
3.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189549

ABSTRACT

Relapsing-remitting multiple sclerosis (RRMS) is the most prevalent MS subtype. Ample evidence has indicated that long noncoding RNAs (lncRNAs) are crucial players in autoimmune and inflammatory disorders. This study investigated the expression of lnc-EGFR, SNHG1, and lincRNA-Cox2 in RRMS patients during active relapses and in remission. Additionally, the expression of FOXP3, a master transcription factor for regulatory T cells, and NLRP3-inflammasome-related genes were determined. Relationships between these parameters and MS activity and annualized relapse rate (ARR) were also evaluated. The study included 100 Egyptian participants: 70 RRMS patients (35 during relapse and 35 in remission) and 30 healthy controls. RRMS patients showed significant downregulation of lnc-EGFR and FOXP3 and dramatic upregulation of SNHG1, lincRNA-Cox2, NLRP3, ASC, and caspase-1 compared to controls. Lower serum TGF-ß1 and elevated IL-1ß levels were observed in RRMS patients. Notably, patients during relapses displayed more significant alterations than those in remission. Lnc-EGFR was positively correlated with FOXP3 and TGF-ß1 and negatively correlated with ARR, SNHG1, lincRNA-Cox2, and NLRP3 inflammasome components. Meanwhile, SNHG1 and lincRNA-Cox2 were positively correlated with ARR, NLRP3, ASC, caspase-1, and IL-1ß. Excellent diagnostic performance for lnc-EGFR, FOXP3, and TGF-ß1 was demonstrated, while all biomarkers exhibited strong prognostic potential for predicting relapses. Finally, the differential expression of lnc-EGFR, SNHG1, and lincRNA-Cox2 in RRMS patients, especially during relapses, suggests their involvement in RRMS pathogenesis and activity. Correlation between their expression and ARR implies relationships to disease progression. Our findings also highlight their promising roles as biomarkers for RRMS.

4.
J Neuroimmunol ; 347: 577356, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32781341

ABSTRACT

Relapsing remitting multiple sclerosis (RRMS) is the most prevalent MS subtype. Years after disease onset, most of RRMS patients show transition into secondary progressive form (SPMS). Currently, no biomarkers are available for tracking disease progression. Here, we observed marked elevation of Rho-associated protein kinase 2 (ROCK2) along with significant downregulation of miRNAs 300 and 450b-5p expressions in the serum of 39 RRMS and 35 SPMS Egyptian patients compared to healthy controls. More pronounced alterations were found in SPMS versus RRMS patients. Our findings also suggest relations between elevated ROCK2 and reduced expression of both miRNAs with the degree of disability and disease progression. Notably, these biomarkers effectively discriminated RRMS from SPMS patients with miR-450b-5p showing the highest prognostic power.


Subject(s)
Disabled Persons , MicroRNAs/blood , Multiple Sclerosis, Chronic Progressive/blood , Multiple Sclerosis, Relapsing-Remitting/blood , rho-Associated Kinases/blood , Adult , Biomarkers/blood , Cohort Studies , Disease Progression , Egypt/epidemiology , Female , Humans , Male , Multiple Sclerosis, Chronic Progressive/diagnosis , Multiple Sclerosis, Chronic Progressive/epidemiology , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/epidemiology , Phenotype
5.
Exp Gerontol ; 137: 110982, 2020 08.
Article in English | MEDLINE | ID: mdl-32450269

ABSTRACT

Ageing is an unavoidable, universal, biological phenomenon affecting all organisms, which involves variable declines of individuals motor and memory capabilities. This study aimed to investigate the potential ameliorating effects of curcumin C3 complex, Astragalus membranaceus and blueberry on certain age-related biochemical alterations in rat liver. Four groups of rats, aged 12 months-old, were used. The first group; aged control group in which rats were left without any treatment until the age of 17 months. The other three groups received daily by oral gavage for 5 months the following supplements; curcumin C3 complex (110 mg/kg), Astragalus membranaceus (100 mg/kg) and blueberry (100 mg/kg) respectively. Additionally, a fifth group of rats, aged 5 months-old, was used as an adult control group. Our supplements alleviated ageing-induced redox state imbalance and inflammation as evidenced by reduction of hepatic thiobarbituric acid reactive substances and 8-hydroxydeoxyguanosine levels, restoration of total antioxidant capacity and nitric oxide contents, and lessening of lipofuscin deposition. All supplements decreased hepatic interlukin-6 gene expression and serum levels. Notably, Astragalus membranaceus and blueberry upregulated hepatic telomerase reverse transcriptase gene expression and increased telomere length. Our findings recommend the use of these natural hepatoprotective supplements for the elderly to promote healthy ageing and minimize the risk of age-related liver diseases.


Subject(s)
Blueberry Plants , Curcumin , Liver Diseases , Animals , Astragalus propinquus , Curcumin/pharmacology , Rats
6.
J Adv Res ; 21: 141-150, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32071782

ABSTRACT

Lately, long noncoding (lnc) RNAs are increasingly appreciated for their involvement in multiple sclerosis (MS). In inflammation and autoimmunity, a role of apoprotein A1 (ApoA1), mediated by sphingosine 1-phosphate receptors (S1PRs), was reported. However, the epigenetic mechanisms regulating these biomolecules and their role in MS remains elusive. This case control study investigated the role of ApoA1, sphingosine kinase 1 and 2 (SPHK1 & 2), S1PR1 & 5, interferon-γ (IFN-γ) and interleukin 17 (IL17) in MS, beside three lncRNA: APOA1-AS, IFNG-AS1, and RMRP. Expression of SPHKs, S1PRs, and lncRNAs were measured in 72 relapsing-remitting MS patients (37 during relapse and 35 in remission) and 28 controls. Plasma levels of ApoA1, IFN-γ and IL17 were determined. The impact of these parameters on MS activity, relapse rate and patient disability was assessed. APOA1-AS, IFNG-AS1, SPHK1 & 2, and S1PR5 were upregulated in RRMS patients. Differences in ApoA1, SPHK2, and IL17 were observed between relapse and remission. Importantly, ApoA1, SPHK2, and IL17 were related to activity, while S1PR1 and IFN-γ were linked to disability, though, only IFN-γ was associated with relapse rate. Finally, an excellent diagnostic power of IFN-γ, IL17, SPHK1 and APOA1-AS was demonstrated, whereas SPHK2 showed promising prognostic power in predicting relapses.

7.
World J Gastroenterol ; 26(2): 168-183, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31988583

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) infection and its consequent complications are undeniably a public health burden worldwide, particularly in Egypt. Emerging evidence suggests that many lncRNAs have relevant roles in viral infections and antiviral responses. AIM: To investigate the expression profiles of circulating lncRNAGAS5, lncRNAHEIH, lncRNABISPR and mRNABST2 in naïve, treated and relapsed HCV Egyptian patients, to elucidate relation to HCV infection and their efficacy as innovative biomarkers for the diagnosis and prognosis of HCV GT4. METHODS: One hundred and thirty HCV-infected Egyptian patients and 20 healthy controls were included in this study. Serum lncRNAs and mRNABST2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Our results indicated that serum lncRNAGAS5 and LncRNABISPR were upregulated, whereas mRNA BST2 and LncRNA HEIH were downregulated in naïve patients. In contrast, HCV patients treated with sofosbuvir and simeprevir; with sofosbuvir and daclatasvir; or with sofosbuvir, daclatasvir and ribavirin exhibited lower levels of lncRNAGAS5 and lncRNABISPR with higher mRNABST2 compared to naïve patients. Notably, patients relapsed from sofosbuvir and simeprevir showed higher levels of these lncRNAs with lower mRNABST2 compared to treated patients. LncRNAGAS5 and lncRNABISPR were positively correlated with viral load and ALT at P < 0.001, whereas mRNABST2 was negatively correlated with viral load at P < 0.001 and ALT at P < 0.05. Interestingly, a significant positive correlation between lncRNA HEIH and AFP was observed at P < 0.001. CONCLUSION: Differential expression of these RNAs suggests their involvement in HCV pathogenesis or antiviral response and highlights their promising roles in diagnosis and prognosis of HCV.


Subject(s)
Hepacivirus/isolation & purification , Hepatitis C/diagnosis , RNA, Long Noncoding/blood , RNA, Messenger/blood , Adult , Antigens, CD/genetics , Antiviral Agents/therapeutic use , Biomarkers/blood , Case-Control Studies , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/metabolism , Down-Regulation , Drug Therapy, Combination/methods , Egypt , Female , GPI-Linked Proteins/genetics , Gene Expression Profiling/methods , Healthy Volunteers , Hepacivirus/genetics , Hepatitis C/blood , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Male , Middle Aged , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Up-Regulation
8.
Can J Physiol Pharmacol ; 96(1): 38-44, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28957639

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death in the diabetic population. Obesity is a serious problem that has been linked with CVD and diabetes via a variety of adipokines. The aims of this study were to evaluate and correlate circulating chemerin, apelin, vaspin, and omentin-1 levels in obese type 2 diabetic Egyptian patients with coronary artery stenosis (CAS), and to assess their usefulness as noninvasive diagnostic biomarkers. Chemerin, apelin, vaspin, and omentin-1 levels were determined by enzyme immunoassay in coronary artery disease (CAD) I patients (45 non-obese, nondiabetic with CAS), CAD II patients (45 obese, diabetic with CAS), and 30 controls. Patients in CAD I and CAD II groups exhibited higher levels of chemerin and apelin together with lower levels of vaspin and omentin-1 than in controls. These alterations were more significant in CAD II than in CAD I patients. Additionally, adipokine levels were individually correlated with each other and with certain biochemical variables. Moreover, chemerin and vaspin levels could differentiate CAD II patients from CAD I and controls. Alterations of these adipokines may play a crucial role in the pathogenesis of CAS in obese type 2 diabetic Egyptian patients. Chemerin and vaspin could be used as markers to support diagnosis of CAS.


Subject(s)
Apelin/blood , Chemokines/blood , Coronary Stenosis/blood , Cytokines/blood , Diabetes Mellitus, Type 2/blood , Intercellular Signaling Peptides and Proteins/blood , Lectins/blood , Obesity/blood , Serpins/blood , Aged , Coronary Stenosis/complications , Diabetes Mellitus, Type 2/complications , Egypt , Female , GPI-Linked Proteins/blood , Humans , Male , Middle Aged , Obesity/complications , ROC Curve
9.
Mol Neurobiol ; 54(5): 3219-3229, 2017 07.
Article in English | MEDLINE | ID: mdl-27067589

ABSTRACT

Multiple sclerosis (MS) is a demyelinating neurodegenerative disease, representing a major cause of neurological disability in young adults. Resveratrol is a stilbenoid polyphenol, known to pass blood brain barrier and exhibit antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. Cuprizone model of MS is particularly beneficial in studying demyelination/remyelination. Our study examined the potential neuroprotective and pro-remyelination effects of resveratrol in cuprizone-intoxicated C57Bl/6 mice. Mice were fed with chow containing 0.7 % cuprizone for 7 days, followed by 3 weeks on 0.2 % cuprizone diet. Resveratrol (250 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. At the end of the experiment, animals were tested on rotarod to evaluate changes in balance and motor coordination. Mice were then sacrificed to measure the brain content of glutathione, lipid peroxidation products, adenosine triphosphate, and phospho-inhibitory subunit of nuclear factor κB-α. The activities of cytochrome oxidase and superoxide dismutase were also assessed. The gene expression of myelin basic protein, 2',3'-cyclic nucleotide 3' phosphodiesterase, oligodendrocyte transcription factor-1 (Olig1), NF-κB p65 subunit, and tumor necrosis factor-α was also estimated. Luxol fast blue/periodic acid-Schiff stained brain sections were blindly scored to assess the myelin status. Resveratrol effectively enhanced motor coordination and balance, reversed cuprizone-induced demyelination, improved mitochondrial function, alleviated oxidative stress, and inhibited NF-κB signaling. Interestingly, resveratrol increased Olig1 expression that is positively correlated to active remyelination. The present study may be the first to indicate a pro-remyelinative effect for resveratrol which might represent a potential additive benefit in treating MS.


Subject(s)
Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Remyelination/drug effects , Stilbenes/therapeutic use , Animals , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cuprizone , Disease Models, Animal , Inflammation/pathology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Motor Activity/drug effects , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Oxidative Stress/drug effects , Resveratrol , Stilbenes/pharmacology
10.
Genome ; 57(5): 259-66, 2014 May.
Article in English | MEDLINE | ID: mdl-25120107

ABSTRACT

Diabetes mellitus is one of the main threats to human health in the 21st century. Visfatin/Nampt and resistin are novel adipokines that have been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) complication. Several genetic studies have shown inconsistent results regarding association of visfatin/Nampt gene (NAMPT) and resistin gene (RETN) polymorphisms with T2DM and CVD complications. Here, we investigate whether NAMPT -948G/T and RETN -420C/G polymorphisms are associated with T2DM, its CVD complications, and serum adipokines levels in 90 Egyptian diabetic patients (44 without CVD and 46 with CVD) along with 60 healthy control subjects. Higher frequencies of NAMPT -948G/G and RETN -420G/G were observed among T2DM patients compared with controls. Furthermore, the frequencies of these genotypes were significantly higher in T2DM patients with CVD than those without CVD. Both NAMPT -948G/G and RETN -420G/G genotypes and G alleles were significantly associated with T2DM and CVD in Egyptian diabetic patients. Moreover, serum visfatin/Nampt and resistin levels were markedly elevated in T2DM patients, with the highest values observed in G/G genotypes among T2DM patients with CVD. In addition, positive correlations were observed between plasma adipokines levels and CVD risk factors. In conclusion, our data suggests that genetic variations in NAMPT -948G/T and RETN -420C/G may contribute to the disposition for T2DM and its CVD complications in Egyptian patients. However, further studies with greater sample size should be performed to verify these results.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Cytokines/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Resistin/genetics , Adult , Cardiovascular Diseases/complications , Cytokines/blood , Diabetes Mellitus, Type 2/complications , Disease Susceptibility , Egypt , Female , Genetic Association Studies , Humans , Male , Middle Aged , Nicotinamide Phosphoribosyltransferase/blood , Polymorphism, Single Nucleotide , Resistin/blood , White People
11.
PLoS One ; 9(6): e99286, 2014.
Article in English | MEDLINE | ID: mdl-24915010

ABSTRACT

Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT) and catechol-O-Methyltransferase (COMT) gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC) and malondialdehyde (MDA) levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.


Subject(s)
Catalase/genetics , Catechol O-Methyltransferase/genetics , Genetic Predisposition to Disease , Oxidative Stress/genetics , Polymorphism, Single Nucleotide/genetics , Vitiligo/enzymology , Vitiligo/genetics , Adult , Antioxidants/metabolism , Biomarkers/metabolism , Case-Control Studies , Demography , Egypt , Exons/genetics , Female , Gene Frequency/genetics , Humans , Male , Malondialdehyde/metabolism , Risk Factors
12.
Chem Biol Interact ; 207: 58-66, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24291008

ABSTRACT

Despite the clinical reports, few studies have focused on reducing the cardiotoxicity of cisplatin. In the present study, cardiotoxicity was examined after a single ip injection of cisplatin (7mg/kg) in rats. Apocynin was given in drinking water (600mg/L) for five successive days before and after cisplatin injection. At the end of the experiment, hemodynamic parameters were recorded, animals were sacrificed and serum creatine kinase-MB activity was determined. The whole ventricle was isolated for estimation of tumor necrosis factor-alpha (TNF-α) content, NADPH oxidase, myeloperoxidase and caspase-3 activities in addition to nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor kappa B (NF-κB) gene expressions. Furthermore, oxidative stress markers and antioxidant enzymes were measured in postmitochondrial and mitochondrial fractions. Mitochondrial membrane potential, nuclear DNA fragmentation and cardiomyocyte cross-sectional area were also evaluated. Apocynin was effective against cisplatin-induced decrement in heart rate and blood pressure. Moreover, pretreatment with apocynin notably ameliorated the state of oxidative stress, mitigated inflammation and preserved mitochondrial membrane potential. Apocynin provided also a significant cardioprotection as revealed by alleviating the overexpression of Nrf2, HO-1 and NF-κB, the elevation of caspase-3 activity, the prominent nuclear DNA fragmentation and the decreased cardiomyocyte cross-sectional area. This study highlights the potential role of apocynin in inhibiting cisplatin-induced hemodynamic changes, postmitochondrial and mitochondrial damage as indicated by improvement in the state of oxidative stress, inflammation and apoptosis.


Subject(s)
Acetophenones/therapeutic use , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/drug therapy , Cisplatin/adverse effects , Enzyme Inhibitors/therapeutic use , NADPH Oxidases/antagonists & inhibitors , Acetophenones/pharmacology , Animals , Biomarkers/metabolism , Blood Pressure/drug effects , Body Weight/drug effects , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/blood , Cardiovascular Diseases/enzymology , Creatine Kinase/blood , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Heart Rate/drug effects , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
14.
Drug Chem Toxicol ; 36(4): 385-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23298270

ABSTRACT

Transient global ischemia continues to be an important clinical problem with limited treatment options. The present study aimed to investigate the possible protective effects of celecoxib [a selective cyclooxygenase (COX-2) inhibitor] and N-omega-nitro-L-arginine methyl ester (L-NAME) [a nonselective nitric oxide synthase (NOS) inhibitor] against global ischemia-reperfusion (IR) induced biochemical and histological alterations in the rat hippocampus. Global ischemia was induced by bilateral clamping of the common carotid arteries for 60 minutes. Hippocampal cysteinyl aspartate-specific protease-3 (caspase-3) activity, nitrite/nitrate contents (NOX), as well as COX-2 immunoreactivity in the hippocampal Cornu Ammonis 1 (CA1) subregion were dramatically increased 24 hours after global ischemia. After 72-hour of reperfusion, ischemia induced a selective, extensive neuronal loss in the hippocampus CA1 subregion. Celecoxib (3 and 5 mg/kg, intraperitoneally; i.p.), administered 30 minutes before ischemia and at 6, 12, and 22 hours of 24-hour reperfusion, caused significant reductions in hippocampal caspase-3 activity as well as the number of COX-2 immunoreactive (COX-2 ir) neurons in the CA1 subregion. Further, celecoxib (3 or 5 mg/kg, i.p.), administered 30 minutes before ischemia and at 6, 12, 22, and 48 hours of 72-hour reperfusion, provided a notable histological protection of hippocampal CA1 neurons. Meanwhile, L-NAME (3 mg/kg, i.p.), administered twice (immediately after ischemia and 45 minutes after starting the reperfusion period), effectively reduced the elevated NOX level, decreased hippocampal caspase-3 activity and COX-2 immumoreactivity, and ameliorated ischemia-induced damage in the hippocampal CA1 subregion. The present study indicates that celecoxib and L-NAME might be neuroprotective agents of potential benefit in the treatment of cerebral ischemia.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Reperfusion Injury/drug therapy , Animals , Caspase 3/metabolism , Celecoxib , Hippocampus/enzymology , Hippocampus/pathology , NG-Nitroarginine Methyl Ester/pharmacology , Nitrates/metabolism , Nitrites/metabolism , Pyrazoles/pharmacology , Rats , Reperfusion Injury/pathology , Sulfonamides/pharmacology , Time Factors
15.
Toxicol Appl Pharmacol ; 268(2): 241-8, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23360886

ABSTRACT

Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10mg/kg/day p.o. for 21days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α & IL-6), and eicosanoids (PGE2 & LTB4) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arthritis, Experimental/drug therapy , Carbazoles/pharmacology , Edema/drug therapy , Inflammation Mediators/metabolism , Oxidative Stress/drug effects , Propanolamines/pharmacology , Animals , Carbazoles/therapeutic use , Carvedilol , Cell Movement/drug effects , Dinoprostone/blood , Leukotriene B4/blood , Male , Propanolamines/therapeutic use , Rats , Rats, Wistar
16.
Cell Biochem Funct ; 31(6): 518-25, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23172693

ABSTRACT

Oxidative stress emerges as a key player in the ageing process. Controlled ozone administration is known to promote an oxidative preconditioning or adaptation to oxidative stress. The present study investigated whether prophylactic ozone administration could interfere with the age-related changes in the heart and the hippocampus of rats. Four groups of rats, aged about 3 months old, were used. Group 1 (Prophylactic ozone group) received ozone/oxygen mixture by rectal insufflations (0.6 mg/kg) twice/week for the first 3 months, then once/week till the age of 15 months. Group 2 (Oxygen group) received oxygen as vehicle for ozone in a manner similar to group 1. Group 3 (Aged control group) was kept without any treatment until the age of 15 months. A fourth group of rats (Adult control group) was evaluated at 3 months of age to provide baseline data. Ozone alleviated age-associated redox state imbalance as evidenced by reduction of lipid and protein oxidation markers, lessening of lipofuscin deposition, restoration of glutathione levels in both tissues and normalization of glutathione peroxidase activity in the heart tissue. Ozone also mitigated age-associated energy failure in the heart and the hippocampus, improved cardiac cytosolic Ca(2+) homeostasis and restored the attenuated Na(+) , K(+) -ATPase activity in the hippocampus of aged rats. These data provide new evidence concerning the anti-ageing potential of prophylactic ozone administration.


Subject(s)
Energy Metabolism/drug effects , Heart/drug effects , Hippocampus/drug effects , Oxidative Stress/drug effects , Ozone/administration & dosage , Age Factors , Aging , Animals , Biomarkers/metabolism , Energy Metabolism/physiology , Glutathione/metabolism , Heart/physiology , Hippocampus/physiology , Humans , Lipofuscin/metabolism , Oxidation-Reduction , Rats
17.
Int J Radiat Biol ; 86(12): 1070-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20712430

ABSTRACT

PURPOSE: To investigate the possible role of vitamin E, coenzyme Q10 and rutin in ameliorating the biochemical changes in brain and serum induced by cerebral ischemia/reperfusion (I/R) in whole body γ-irradiated rats. MATERIALS AND METHODS: Cerebral ischemia was induced in male Wistar rats (either irradiated or non-irradiated) followed by reperfusion. RESULTS: I/R increased brain content of malondialdehyde (MDA) and depleted its glutathione (GSH) content with a compensatory elevation in cytosolic activities of glutathione peroxidase (GPx) and glutathione reductase (GR) enzymes. It also raised brain cytosolic lactate dehydrogenase (LDH) activity and calcium (Ca(2+)) level. Furthermore, I/R provoked an inflammatory response reflected by an increment in serum levels of the proinflammatory cytokines tumour necrosis factor-α (TNF-α) and interlukin-1ß (IL-1ß). Moreover, induction of I/R in irradiated rats resulted in a further increase in brain oxidative stress and cytosolic LDH activity, disturbed brain Ca(2+) homeostasis and exaggerated the inflammatory reaction. During irradiation, administration of each of vitamin E, coenzyme Q10 (CoQ10) and rutin to irradiated rats before induction of I/R, alleviated the brain oxidative stress. Moreover, these antioxidants caused attenuation of the rise of the cytosolic activities of GPx and GR. A lowering effect of the cytosolic LDH activity and Ca(2+) level were caused by treatment with antioxidants. Each of vitamin E and rutin revealed an anti-inflammatory action of these antioxidants, while CoQ10 had no effect on serum levels of TNF-α and IL-1ß. CONCLUSION: These findings indicate that supplementation with either vitamin E, CoQ10 or rutin ameliorated most of the biochemical changes induced by I/R in irradiated rat brain and serum.


Subject(s)
Brain Ischemia/drug therapy , Brain Ischemia/etiology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Reperfusion Injury/prevention & control , Rutin/pharmacology , Ubiquinone/analogs & derivatives , Vitamin E/pharmacology , Animals , Antioxidants/pharmacology , Brain Ischemia/metabolism , Gamma Rays/adverse effects , Glutathione/metabolism , Interleukin-1beta/blood , Male , Malondialdehyde/metabolism , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Rats , Rats, Wistar , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha/blood , Ubiquinone/pharmacology
18.
Mol Cell Biochem ; 281(1-2): 173-83, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16328970

ABSTRACT

Fenugreek and Balanites are two plants commonly used in Egyptian folk medicine as hypoglycemic agents. In the present study, the effects of 21 days oral administration of Fenugreek seed and Balanites fruit extracts (1.5 g/kg bw) on the liver and kidney glycogen content and on some key liver enzymes of carbohydrate metabolism in STZ-diabetic rats were studied. In addition, the effects of these two plant extracts on the intestinal alpha-amylase activity in vitro and starch digestion and absorption in vivo were also examined. Results indicated that single injection of STZ (50 mg/kg bw) caused 5-folds increase in the blood glucose level, 80% reduction in serum insulin level, 58% decrease in liver glycogen and 7-folds increase in kidney glycogen content as compared to the normal levels. The activity of glucose-6-phosphatase was markedly increased, whereas, the activities of both glucose-6-phosphate dehydrogenase and phospho-fructokinase were significantly decreased in the diabetic rat liver. Administration of Fenugreek extract to STZ-diabetic rats reduced blood glucose level by 58%, restored liver glycogen content and significantly decreased kidney glycogen as well as liver glucose-6-phosphatase activity. Meanwhile, Balanites extract reduced blood glucose level by 24% and significantly decreased liver glucose-6-phosphatase activity in diabetic rats. On the other hand, our results demonstrated that both the Fenugreek and Balanites extracts were able to in vitro inhibit alpha-amylase activity in dose-dependent manner. Fenugreek was more potent inhibitor than Balanites. This inhibition was reversed by increasing substrate concentration in a pattern which complies well with the effect of competitive inhibitors. Furthermore, this in vitro inhibition was confirmed by in vivo suppression of starch digestion and absorption induced by both plant extracts in normal rats. These findings suggest that the hypoglycemic effect of Fenugreek and Balanites is mediated through insulinomimetic effect as well as inhibition of intestinal alpha-amylase activity.


Subject(s)
Balanites/chemistry , Hypoglycemic Agents/administration & dosage , Plants, Medicinal/chemistry , Trigonella/chemistry , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/enzymology , Fruit , Glycogen/metabolism , Kidney/drug effects , Liver/drug effects , Liver/enzymology , Male , Plant Extracts/administration & dosage , Rats , Rats, Wistar , Seeds , Starch/antagonists & inhibitors , Starch/metabolism , Sucrase/metabolism , alpha-Amylases/metabolism
19.
J Biochem Mol Toxicol ; 18(2): 69-77, 2004.
Article in English | MEDLINE | ID: mdl-15122648

ABSTRACT

Doxorubicin (DOX) is a potent antitumor antibiotic drug known to cause severe cardiac toxicity. Moreover, its adverse effects were found to be extended to the cerebral tissue. Several mechanisms for this toxicity have been ascribed. Currently, one of the most accepted mechanisms is through free radicals; however, the exact role of nitric oxide (NO) is still unclear. Accordingly, a NO-synthase inhibitor with some antioxidant property, aminoguanidine (AG), was selected to examine its potential protective effect against DOX-induced toxicity. Male Wistar albino rats (150-200 g) were allocated into a normal control group, DOX-induced toxicity group, and DOX + AG-treated group. DOX was injected i.p. at a dose of 10 mg/kg divided into four equal injections over a period of 2 weeks. AG was injected i.p. at a dose of 100 mg/kg 1 h before each DOX injection. The animals were sacrificed 24 h after the last DOX injection and the following parameters were measured: serum lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities, cardiac and cerebral contents of malondialdehyde (MDA), conjugated diene (CD), glutathione (GSH), NO, and cytosolic calcium, as well as superoxide dismutase (SOD) and glutathione peroxidase (GSHP(X)) activities. Cardiotoxicity was manifested by a marked increase in serum LDH and CPK in addition to the sharp increase in MDA reaching eightfolds the basal level. This was accompanied by significant increase in CD, NO, cytosolic calcium, SOD, and GSHP(X) content/activity by 69, 85, 76, 125, and 41% respectively as compared to normal control. On the other hand, GSH was significantly depressed. In brain, only significant increase in MDA and GSHP(X) and decrease in GSH were obtained but to a lesser extent than the cardiac tissue. AG treatment failed to prevent the excessive release of cardiac enzymes; however, it alleviated the adverse effects of DOX in heart. AG administration resulted in marked decrease in the elevated levels of MDA, NO, SOD, and GSHP(X), however, MDA level was still pathological. The altered parameters in brain were restored by AG. It is concluded that, AG could not provide complete protection against DOX-induced toxicity. Therefore, it is recommended that, maintenance of the endogenous antioxidant, GSH, and regulation of calcium homeostasis must be considered, rather than NO formation, to guard against DOX-induced toxicity.


Subject(s)
Brain/drug effects , Brain/metabolism , Doxorubicin/toxicity , Heart/drug effects , Myocardium/metabolism , Nitric Oxide/metabolism , Animals , Antibiotics, Antineoplastic/toxicity , Enzyme Inhibitors/pharmacology , Glutathione/metabolism , Guanidines/pharmacology , Male , Malondialdehyde/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase Type II , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL