Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16902, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043726

ABSTRACT

The liver carries out many essential tasks, such as synthesising cholesterol, controlling the body's storage of glycogen, and detoxifying metabolites, in addition to performing, and regulating homeostasis. Hepatic fibrosis is a pathological state characterized by over accumulation of extracellular matrix (ECM) including collagen fibers. Sildenafil (a selective inhibitor of type 5 phosphodiesterase) has anti-inflammatory, antioxidant and anti-apoptotic properties. It is commonly used to treat erectile dysfunction in male. The purpose of the current investigation was to evaluate sildenafil's hepatoprotective potential against liver fibrosis in rats that was caused by carbon tetrachloride (CCl4). Liver enzymes and oxidative markers as well as profibrotic genes were determined. The findings showed that sildenafil alleviates the hepatic dysfunctions caused by CCl4 by restoring normal levels of ALT, AST, and GGT as well as by restoring the antioxidant status demonstrated by increased glutathione (GSH), and catalase. In addition, a significantly down-regulated the mRNA expressions of profibrotic genes [collagen-1α, IL-1ß, osteopontin (OPN), and transforming growth factor-ß (TGF-ß)]. Additionally, sildenafil lessens the periportal fibrosis between hepatic lobules, congestion and dilatation in the central vein, and the inflammatory cell infiltrations. As a result, it is hypothesized that sildenafil may be helpful in the management of hepatotoxicity brought on by CCl4 through suppressing OPN.


Subject(s)
Carbon Tetrachloride , Liver Cirrhosis , Osteopontin , Sildenafil Citrate , Animals , Sildenafil Citrate/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Osteopontin/metabolism , Osteopontin/genetics , Rats , Male , Down-Regulation/drug effects , Disease Models, Animal , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Antioxidants/pharmacology , Gene Expression Regulation/drug effects , Rats, Wistar
2.
Cells ; 12(7)2023 03 24.
Article in English | MEDLINE | ID: mdl-37048067

ABSTRACT

Although the classic form of asthma is characterized by chronic pneumonitis with eosinophil infiltration and steroid responsivity, asthma has multifactorial pathogenesis and various clinical phenotypes. Previous studies strongly suggested that chemical exposure could influence the severity and course of asthma and reduce its steroid responsiveness. Cypermethrin (CYP), a common pesticide used in agriculture, was investigated for the possible aggravation of the ovalbumin (OVA)-induced allergic pneumonitis and the possible induction of steroid resistance in rats. Additionally, it was investigated whether pirfenidone (PFD) could substitute dexamethasone, as an alternative treatment option, for the induced steroid resistance. Fifty-six male Wistar albino rats were randomly divided into seven groups: control, PFD alone, allergic pneumonitis, CYP alone, allergic pneumonitis/CYP-exposed, allergic pneumonitis/CYP/dexamethasone (Dex), and allergic pneumonitis/CYP/PFD-treated groups. Allergic pneumonitis was induced by three intraperitoneal OVA injections administered once a week, followed by an intranasal OVA instillation challenge. CYP (25 mg/kg/d), Dex (1 mg/kg/d), and PFD (100 mg/kg/d) were administered orally from day 15 to the end of the experiment. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokine levels. Hematoxylin and eosin (H&E) and periodic acid Schiff (PAS)-stained lung sections were prepared. Immunohistochemical identification of p38 MAPK and lung macrophages was performed. The inflammatory/oxidative status of the lung and PCR-quantification of the STAT6, p38 MAPK, MUC5AC, and IL-13 genes were carried out. The allergic pneumonitis-only group showed eosinophil-mediated inflammation (p < 0.05). Further CYP exposure aggravated lung inflammation and showed steroid-resistant changes, p38 activation, neutrophil-mediated, M1 macrophage-related inflammation (p < 0.05). All changes were reversed (p < 0.05) by PFD, meanwhile not by dexamethasone treatment. Pirfenidone could replace dexamethasone treatment in the current rat model of CYP-induced severe steroid-resistant asthma via inhibiting the M1 macrophage differentiation through modulation of the STAT6/p38 MAPK pathway.


Subject(s)
Alveolitis, Extrinsic Allergic , Asthma , Pneumonia , Animals , Rats , Male , Ovalbumin/adverse effects , Rats, Wistar , Asthma/chemically induced , Asthma/drug therapy , Asthma/genetics , Pneumonia/chemically induced , Pneumonia/drug therapy , Inflammation , Macrophages/metabolism , Dexamethasone/adverse effects , Phenotype , p38 Mitogen-Activated Protein Kinases/genetics
3.
Toxicol Res (Camb) ; 11(2): 325-338, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35510233

ABSTRACT

This study examined if wheat germ oil (WGO) has gastroprotective impacts against ethanol-induced gastric ulcer in rats. Rats were assigned into control, WGO, ethanol, omeprazole + ethanol, and WGO + ethanol. WGO prevented gastric ulceration and damage induced by ethanol, the same effect induced by omeprazole, a widely known medication used for gastric ulcer treatment. WGO reduced gastric ulcer index, nitric oxide, and malondialdehyde levels in the stomach. WGO boosted the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Bcl2, and the antioxidants. WGO showed inflammatory and anti-inflammatory impacts through the control of interleukin (IL)-1ß, Tumor necrosis factor alpha (TNF-α), and IL-10 that were altered in ethanol-administered rats. Ethanol up-regulated caspase-3 and nuclear factor-kappa B (NF-kB) expression and showed histopathological changes such as necrosis and mucosal degeneration that were mitigated by pre-administration of WGO. Moreover, WGO decreased gastric immunoreactivity of NF-kB and increased transforming growth factor beta-1 (TGF-ß1) that were associated with upregulation of Nrf2, heme oxygenase-1 (HO-1), and antioxidant expression and production. In conclusion, WGO reduced ethanol-induced stomach toxicity by regulating genes involved in oxidative stress, inflammation, and apoptotic/antiapoptotic pathways.

SELECTION OF CITATIONS
SEARCH DETAIL