Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14684, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918454

ABSTRACT

Researchers face significant challenges because of the inadequate corrosion resistance and weak adherence of epoxy (EP) coatings. We deal with these issues here by means of a novel nano-composite coating (EP/nano-CoS2). In order to create a composite coating (EP/nano-CoS2), CoS2 nanoparticles (nano-CoS2) were prepared and incorporated to an epoxy (EP) resin. The synthesized CoS2 was characterized using XRD and FT-IR spectroscopic techniques. The mean particle size was determined using Scherer equation and found to be 19.38 nm. The zeta potential was also determined (- 9.78 mV). Electrochemical impedance spectroscopies (EIS) as well as pull-off assessments were used to quantify the EP/nano-CoS2 coating's anti-corrosion capabilities and adhesive power. The findings demonstrate that the EIS variables of the EP/nano-CoS2 composite coating are markedly improved when compared to raw EP coating. The corrosion resistance or even adhesion of EP protective layer can be markedly increased by using the synthesized nanoparticles as nano-fillers.

2.
Sci Rep ; 14(1): 12671, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830937

ABSTRACT

Photocatalysis is a promising technique to reduce hazardous organic pollutants using semiconductors under visible light. However, previous studies have been concerned with the behavior of silver phosphate (Ag3PO4) as n-type semiconductors, and the problem of their instability is still under investigation. Herein, 4,4'-(((oxalylbis(azanediyl)) bis(carbonothioyl)) bis(azanediyl)) dibenzoic acid is synthesized by green method and used to enhance the photocatalytic behavior for Ag3PO4. The incorporated Ag3PO4 core-shell is prepared and characterized via XRD, FT-IR, Raman, TEM and BET. Besides, the thermal stability of the prepared core shell was investigated via TGA and DSC measurements. The optical properties and the energy band gap are determined using photoluminescence and DRS measurements. The photodegradation of methylene blue in the presence of the synthesized Ag3PO4 core-shell under visible light is examined using UV/Vis measurements. The effect of initial dye concentration and contact time are studied. In addition, the kinetic behavior of the selected dye during the photodegradation process shows a pseudo-first order reaction with rate constant of 0.015 min-1 for ZAg. The reusability of the Ag3PO4 core shell is evaluated, and the efficiency changed from 96.76 to 94.02% after three cycles, indicating efficient photocatalytic behavior with excellent stability.

3.
Sci Rep ; 14(1): 11395, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762558

ABSTRACT

In order to protect the copper against corrosion, a novel corrosion inhibitor known as diphenyl ((2-aminoethyl) amino) (4-methoxyphenyl) methyl) phosphonate (DAMP) was developed. Acid solutions of HCl and H2SO4 were the aggressive solutions employed in this study. Analysis using the FT-IR, 1H-NMR, 31P-NMR, 13C-NMR and BET confirmed that the DAMP was successfully synthesized. The anti-corrosion capabilities of DAMP are evaluated using a combination of chemical, electrochemical and quantum studies. The DAMP has been found to be crucial in preventing the corrosion of copper in both HCl and H2SO4 acid. This was obviously implied by the observation that the corrosion rate of copper in acid solutions decreased when DAMP was added. It is significant to note that 180 ppm produced the highest levels of inhibiting efficiency (96.6% for HCl and 95.2% for H2SO4). The tendency of DAMP to adsorb on the surface of copper through its hetero-atoms (O, N, and P) is the main factor for the anti-corrosion capabilities of DAMP. Results from SEM/EDX tests supported this. The actual adsorption takes place via various active centers, physical and chemical mechanisms that are coordinated with the estimated quantum parameters. Additionally, the adsorption of DAMP adheres to the Langmuir isotherm.

4.
Sci Rep ; 14(1): 8040, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580731

ABSTRACT

Several environmentally acceptable non-ionic gemini surfactants are synthesized in this work using natural sources, including polyethenoxy di-dodecanoate (GSC12), polyethenoxy di-hexadecanoate (GSC16), and polyethenoxy di-octadecenoate (GSC18). The produced surfactants are confirmed by spectrum studies using FT-IR, 1HNMR, and 13CNMR. It explored and examined how the length of the hydrocarbon chain affected essential properties like foaming and emulsifying abilities. Surface tension examinations are used to assess the surface activity of the examined gemini surfactants. The lower value of critical micelle concentrations (0.381 × 10-4M) is detected for GSC18. Their spontaneous character is shown by the negative values of the free energy of adsorption (ΔGads) and micellization (ΔGmic) which arranged in the order GSC18 > GSC16 > GSC12. Based on theoretical, weight loss, and electrochemical investigations, these novel surfactants were investigated for their possible use in inhibiting carbon steel from corroding in 1 M HCl. Measuring results show that GSC18 inhibits corrosion in carbon steel by 95.4%. The isotherm of adsorption evaluated for the investigated inhibitors and their behavior obeys Langmuir isotherm.

5.
Sci Rep ; 14(1): 3535, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347018

ABSTRACT

Co3O4 nanoparticles (Co3O4-NPs) are synthesized using the facile solvothermal method. FT-IR and XRD spectroscopic analyses verify the creation of cobalt oxide nanoparticles with an average size of 13.20 nm. Furthermore, Zeta potential assessments were carried out to identify the electrical charge of the surface of the produced Co3O4-NPs, which was found to be -20.5 mV.  In addition, the average pore size of Co3O4-NPs is 19.8 nm, and their BET surface area is 92.4 m/g. The study also concerned the effect of Co3O4-NPs on epoxy's improvement of mechanical and corrosion protection for carbon steel in salt solution. By including Co3O4-NPs in an epoxy (EP) coating, corrosion is effectively prevented by non-permeable protective coatings that effectively reduce the transfer of corrosion ions and oxygen.

6.
ACS Omega ; 8(48): 45224-45231, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075840

ABSTRACT

In this review, the importance of corrosion inhibitors in desalination plants is briefly discussed, with an emphasis on the various types for effective corrosion control techniques. The review highlighted the most significant corrosion inhibitors used in desalination plants for minimizing the corrosiveness of the source water throughout pretreatment, reverse osmosis, and post-treatment stages. Water composition, temperature and pressure, pH, dissolved oxygen, flow velocity, chloride content, fouling, and scaling are all described as factors affecting corrosion in desalinated water. The types of corrosion inhibitors used in desalination plants are summarized, including inorganic inhibitors, organic inhibitors, and eco-friendly inhibitors. Environmental issues and long-term inhibition are highlighted briefly.

7.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446620

ABSTRACT

α-aminophosphonate (α-AP) is used as a novel corrosion inhibitor for carbon steel. The aggressive media applied in this study are HCl and H2SO4 acid solutions. The findings indicate that the morphology of the α-AP compound is cubic, with particles ranging in size from 17 to 23 µm. FT-IR, 1HNMR, 31PNMR, and 13CNMR analysis confirmed the synthesis of the α-AP molecule. It has been discovered that the compound α-AP plays an important role in inhibiting the corrosion of carbon steel in both HCl and H2SO4 acids. This was identifiably inferred from the fact that the addition of α-AP compound decreased the corrosion rate. It is important to report that the maximum inhibition efficiency (92.4% for HCl and 95.7% for H2SO4) was obtained at 180 ppm. The primary factor affecting the rate at which steel specimens corrode in acidic electrolytes is the tendency of α-AP compounds to adsorb on the surface of steel through their heteroatoms (O, N, and P). This was verified by SEM/EDX results. The adsorption actually occurs through physical and chemical mechanisms via different active centers which are matched with the calculated quantum parameters. In addition, the adsorption of α-AP follows the Langmuir isotherm.


Subject(s)
Carbon , Steel , Steel/chemistry , Corrosion , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Acids
8.
Sci Rep ; 13(1): 8680, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248267

ABSTRACT

Aluminum-silicon alloys have become a preferred option in the automotive and aerospace industries thanks to their fault-tolerant process ability and reasonable static characteristics at relatively affordable costs. This study aimed to investigate the use of favipiravir (FAV) drug as a biocompatible and eco-friendly inhibitor to protect aluminum alloy (AlSi) surface in an aggressive acid environment (1.0 M HCl). The electrochemical measurements declare that FAV is categorized as an inhibitor of mixed type with a cathodic effect. At 100 ppm, FAV had the highest inhibitory efficiency (96.45%). FAV is associated with lower double-layer capacitance values and more excellent charge-transfer resistance. These results show that AlSi corrosion in 1.0 M HCl is reduced in the presence of FAV. The Langmuir model is well-suited to the FAV adsorption behavior (R2 ≈ 1). Chemisorption is the primary adsorption in this environment. The theoretical calculation studies corrosion inhibitors' molecular structure and behavior. Different quantum chemical properties of the FAV have been calculated, including energy difference (ΔE), softness, global hardness, and energy of back-donation depending on the highest occupied and lowest unoccupied molecular orbitals. In addition, Mulliken and Fukui's population analysis and the Molecular Electrostatic Potential map represent the electron distribution and the molecule's active centers. Experimental findings and quantum chemical computations matched, and FAV is recommended as a green corrosion inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL