Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1324538, 2024.
Article in English | MEDLINE | ID: mdl-38584952

ABSTRACT

Phosphorus fertilization imposes critical limitations on crop productivity and soil health. The aim of the present work is to explore the potential of two phosphate solubilizing bacteria (PSB) species in phosphorus supplementation of canola (Brassica napus L.). Out of 38 bacterial isolates obtained from nine medicinal plants, two bacterial strains (20P and 28P) were proved as the most potent for the in-vitro tricalcium phosphate solubilization test. These isolates verified their activity toward different enzymes as nitrogenase and alkaline phosphatase. Also, 20P and 28P gave a high amount of indole-3-acetic acid, 34.16 µg/ml and 35.20 µg/ml, respectively, and were positive for siderophores production as they detected moderate affinity for iron chelation. Molecular identification confirmed that strain 20P was Bacillus vallismortis and strain 28P was Bacillus tequilensis. A pot experiment was conducted to study the effect of four different phosphorus concentrations (0%, 50%, 75%, and 100% P) each alone and/or in combination with B. vallismortis, B. tequilensis, or both bacterial isolates on the vegetative growth and some physiological parameters of canola. The combined treatment of 50% phosphorus + (B. vallismortis + B. tequilensis) was generally the most effective with respect to shoot height, shoot dry mass, leaf area, photosynthetic pigment fractions, total sugar content, and accumulated NPK content. In contrast, the rhizosphere pH reached the minimum value under the same treatment. These findings highlighted the potential use of PSB (B. vallismortis and B. tequilensis) along with phosphorus fertilization as a safe sustainable tactic.

2.
Int J Biol Macromol ; 268(Pt 2): 131737, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657940

ABSTRACT

Recently, there has been a surge in curiosity regarding the application of biopolymer-derived nanomaterials, primarily attributable to their extensive array of potential applications. In this study, nanocellulose was extracted from algae, biomolecule substances synthesized selenium nanoparticles, and a simple nanocomposite of nanocellulose and nanoselenium was elaborated using nanocellulose as a reducing agent under hydrothermal conditions. These nanocomposite materials have markedly improved properties at low concentrations. Our obtained polymers were characterized using techniques including Fourier-transform infrared spectroscopy, X-ray powder diffraction, Thermo gravimetric analysis (TGA), Scanning electron microscopic (SEM), Energy Dispersive X-ray analysis (EDX), Transmission electron microscopic (TEM), Zeta Potential and Dynamic Light Scattering (DLS). The size of nanocellulose, nanoselenium, and nanocomposite ranged from 35 to 85 nm. Antimicrobial investigation of the prepared nanopolymers was tested against Gram-negative bacteria such as Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538, Gram-positive bacteria such as Escherichia coli ATCC8739 and Pseudomonas aeruginosa ATCC 90274 and fungi such as Candida albicans ATCC 10221 besides Aspergillus fumigatus. In antibacterial action tests, nanoselenium showed significant efficacy against Bacillus subtilis with a 12 mm zone of inhibition, while the nanocomposite eclipsed all microorganisms. Nanocellulose and the nanocomposite were potent against Staphylococcus aureus (14 mm and 16 mm zones of inhibition, respectively). The nanocomposite showed potential against Escherichia coli and Pseudomonas aeruginosa (17 mm and 15 mm zones of inhibition, respectively). All polymers effectively inhibited Candida albicans growth (18 mm for the nanocomposite). The minimum inhibitory concentrations (MIC) for three polymers have also been established. While nanocellulose displayed a MIC of 62.5 µg/ml in contradiction to Staphylococcus aureus, nanoselenium demonstrated a significant MIC of 3.95 µg/ml against Bacillus subtilis. These findings highlight the potential of the nanocomposite (nanocellulose-nanoselenium) as a broad-spectrum antimicrobial polymer.

3.
J Environ Manage ; 356: 120611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508014

ABSTRACT

Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods. This review aims to summarize recent developments in microalgal cultivation techniques and genetic engineering strategies for enhanced biohydrogen production. Specific areas of focus include novel microalgal species selection, immobilization methods, integrated hybrid systems, and metabolic engineering. Studies related to microalgal strain selection, cultivation methods, metabolic engineering, and genetic manipulations were compiled and analyzed. Promising microalgal species with high hydrogen production capabilities such as Synechocystis sp., Anabaena variabilis, and Chlamydomonas reinhardtii have been identified. Immobilization techniques like encapsulation in alginate and integration with dark fermentation have led to improved hydrogen yields. Metabolic engineering through modulation of hydrogenase activity and photosynthetic pathways shows potential for enhanced biohydrogen productivity. Considerable progress has been made in developing microalgal systems for biohydrogen. However, challenges around process optimization and scale-up remain. Future work involving metabolic modeling, photobioreactor design, and genetic engineering of electron transfer pathways could help realize the full potential of this renewable technology.


Subject(s)
Microalgae , Microalgae/metabolism , Biofuels , Fermentation , Photobioreactors , Hydrogen/analysis , Biomass
4.
Front Pharmacol ; 15: 1345516, 2024.
Article in English | MEDLINE | ID: mdl-38469406

ABSTRACT

Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.

5.
Sci Rep ; 14(1): 2725, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302601

ABSTRACT

Microalgal lipids are precursors to the production of biodiesel, as well as a source of valuable dietary components in the biotechnological industries. So, this study aimed to assess the effects of nutritional (nitrogen, and phosphorus) starvations and salinity stress (NaCl) on the biomass, lipid content, fatty acids profile, and predicted biodiesel properties of green microalga Monoraphidium braunii. The results showed that biomass, biomass productivity, and photosynthetic pigment contents (Chl. a, b, and carotenoids) of M. braunii were markedly decreased by nitrogen and phosphorus depletion and recorded the maximum values in cultures treated with full of N and P concentrations (control, 100%). These parameters were considerably increased at the low salinity level (up to 150 mM NaCl), while an increasing salinity level (up to 250 mM NaCl) reduces the biomass, its productivity, and pigment contents. Nutritional limitations and salt stress (NaCl) resulted in significantly enhanced accumulation of lipid and productivity of M. braunii, which represented more than twofold of the control. Furthermore, these conditions have enhanced the profile of fatty acid and biodiesel quality-related parameters. The current study exposed strategies to improve M. braunii lipid productivity for biodiesel production on a small scale in vitro in terms of fuel quality under low nutrients and salinity stress.


Subject(s)
Chlorophyceae , Microalgae , Biofuels , Biomass , Sodium Chloride/pharmacology , Fatty Acids/chemistry , Nutrients , Salinity , Nitrogen/pharmacology , Phosphorus/pharmacology , Salt Stress
6.
Int J Biol Macromol ; 259(Pt 2): 129307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199545

ABSTRACT

Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.


Subject(s)
Opuntia , Seaweed , Chemical Phenomena , Tensile Strength , Biopolymers
7.
Sci Rep ; 14(1): 2547, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38291218

ABSTRACT

Over the past years, the assessment of myco-fabricated selenium nanoparticles (SeNPs) properties, is still in its infancy. Herein, we have highly stable myco-synthesized SeNPs using molecularly identified soil-isolated fungus; Penicillium tardochrysogenum OR059437; (PeSeNPs) were clarified via TEM, EDX, UV-Vis spectrophotometer, FTIR and zeta potential. The therapeutic efficacy profile will be determined, these crystalline PeSeNPs were examined for antioxidant, antimicrobial, MIC, and anticancer potentials, indicating that, PeSeNPs have antioxidant activity of (IC50, 109.11 µg/mL) using DPPH free radical scavenging assay. Also, PeSeNPs possess antimicrobial potential against Penicillium italicum RCMB 001,018 (1) IMI 193,019, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 4330 and Porphyromonas gingivalis RCMB 022,001 (1) EMCC 1699; with I.Z. diameters and MIC; 16 ± 0.5 mm and MIC 500 µg/ml, 11.9 ± 0.6 mm, 500 µg/ml and 15.9±0.6 mm, 1000 µg/ml, respectively. Additionally, TEM micrographs were taken for P. italicum treated with PeSeNPs, demonstrating the destruction of hyphal membrane and internal organelles integrity, pores formation, and cell death. PeSeNP alone in vivo and combined with a near-infrared physiotherapy lamp with an energy intensity of 140 mW/cm2 showed a strong therapeutic effect against cancer cells. Thus, PeSeNPs represent anticancer agents and a suitable photothermal option for treating different kinds of cancer cells with lower toxicity and higher efficiency than normal cells. The combination therapy showed a very large and significant reduction in tumor volume, the tumor cells showed large necrosis, shrank, and disappeared. There was also improvement in liver ultrastructure, liver enzymes, and histology, as well as renal function, urea, and creatinine.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Penicillium , Selenium , Selenium/pharmacology , Selenium/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Infective Agents/pharmacology
8.
Int J Environ Health Res ; 34(4): 1861-1878, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36617396

ABSTRACT

The antibiofilm, antibacterial, antioxidant, and anticancer activities of the methanolic extract of Padina pavonica L. were determined. Results deduced that the algal extract had a high biofilm formation inhibitory action done via crystal violet (CV) assay, to 88-99%. The results showed a strong antibacterial against the identified bacteria species. Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Bacillus subtilis, and the extract had moderate antibacterial activity against Escherichia coli, Pseudomonas fluorescens and Streptococcus agalactiae. The algal extract has a concentration-dependent DPPH radical scavenging activity (84.59%, with IC50 = 170.31 µg/ml). The inhibitory percent of P. pavonica methanolic extract in vitro antiproliferative activity was 1.79-98.25% with IC50 = 15.14 µg/ml against lung carcinoma. Phenols, terpenes, amino acids, alkaloids, flavones, alcohols, and fatty acids were among the metabolites whose biological actions were evaluated. In conclusion, for the first time, P. pavonica methanolic extract exhibited effective antibiofilm, antibacterial, antioxidant, and anticancer activities. .


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Biomass , Anti-Bacterial Agents/pharmacology , Methanol , Biofilms
9.
Int J Nanomedicine ; 18: 6601-6638, 2023.
Article in English | MEDLINE | ID: mdl-38026521

ABSTRACT

The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Nanoparticles/chemistry , Plants/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Neoplasms/drug therapy
10.
Sci Rep ; 13(1): 17954, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863955

ABSTRACT

Nowadays, researchers are very interested in improving the stability and solubility of blending diesel fuel with a high percentage of ethanol. As a result, the goal of this paper was to find a way to use the surfactant of Tri-n-butyl phosphate (TBP) substance to blend ethanol with diesel fuel to a level of 40%. Diesel fuel is mixed with ethanol in volumetric proportions of 10%, 20%, 30%, and 40%, as well as a tiny amount of TBP from 1 to 4%. The prepared blends were the subject of an experiment evaluation by fueling a direct injection diesel engine. This engine is a water-cooled, commercial diesel engine, single cylinder, and four-stroke with 12 kW maximum power. The four blends were evaluated as clean fuel mixtures of 10% ethanol/90% diesel/1% TBP, 20% ethanol/80% diesel/2% TBP, 30% ethanol/70% diesel/3% TBP, and 40% ethanol/60% diesel/4% TBP. As the starting fuel, we used 100% diesel to compare the results. The engine's output and emissions have been measured at various engine loads and constant speeds of 1500 rpm. According to the data gathered, even when the percentage of ethanol was increased to 40%, neither the base fuel nor the engine BTE changed significantly. The engine exhaust gas temperature was found to decrease slightly when the proportion of ethanol was increased. When bioethanol is increased to 40% of the base volume, it causes an increase in the combustion of unburned hydrocarbons and CO emissions. However, when the percentage of ethanol was increased from 100% diesel to the base fuel to 40%, CO2 emissions decreased, and O2 emissions slightly increased.

11.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894655

ABSTRACT

Brown macroalgae are a rich source of fucoidans with many pharmacological uses. This research aimed to isolate and characterize fucoidan from Dictyota dichotoma var. dichotoma (Hudson) J.V. Lamouroux and evaluate in vitro its antioxidant and antitumor potential. The fucoidan yield was 0.057 g/g algal dry wt with a molecular weight of about 48.6 kDa. In terms of fucoidan composition, the sulfate, uronic acid, and protein contents were 83.3 ± 5.20 mg/g fucoidan, 22.5 ± 0.80 mg/g fucoidan, and 26.1 ± 1.70 mg/g fucoidan, respectively. Fucose was the primary sugar component, as were glucose, galactose, mannose, xylose, and glucuronic acid. Fucoidan exhibited strong antioxidant potential that increased by more than 3 times with the increase in concentration from 0.1 to 5.0 mg/mL. Moreover, different concentrations of fucoidan (0.05-1 mg/mL) showed their ability to decrease the viability of Ehrlich ascites carcinoma cells in a time-dependent manner. These findings provided a fast method to obtain an appreciable amount of natural fucoidan with established structural characteristics as a promising compound with pronounced antioxidant and anticancer activity.


Subject(s)
Phaeophyceae , Seaweed , Antioxidants/pharmacology , Polysaccharides/chemistry , Phaeophyceae/chemistry , Seaweed/chemistry
12.
BMC Microbiol ; 23(1): 274, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773101

ABSTRACT

Microbial skin infections, antibiotic resistance, and poor wound healing are major problems, and new treatments are needed. Our study targeted solving this problem with Nigella sativa (NS) oil and photodynamic therapy based on methylene blue (MB-PDT). Antibacterial activity and minimum inhibitory concentration (MIC) were determined via agar well diffusion assay and broth microdilution, respectively. Transmission electron microscopy (TEM) proved deformations in Staphylococcus aureus ATCC 6538. Gas chromatography-mass spectrometry identified useful compounds that were suggested to be responsible for the potency of the oil. NS oil was tested as an antivirus against low pathogenic coronavirus (229E). Therapies examined, MB-PDT, NS, and MB-PDT + NS oil, to accelerate wound healing. The antibacterial efficacy against S. aureus was promising, with a MIC of 12.5% and TEM showing injured cells treated with NS oil. This oil inhibited 229E virus up to 42.85% and 32.14%. All tested therapies were successful in accelerating wound healing. The most successful was combined therapy (MB-PDT + NS oil), with a faster healing time. The combined therapy (MB-PDT + NS oil) reduced bacterial counts, which may be a key factor in accelerating wound healing. Skin wound histology was investigated; blood hematology and biochemical analysis did not change significantly after the safe combination treatment. A combination treatment could facilitate healing in a simple and inexpensive way in the future. Based on the results of the in vitro and in vivo studies, it was determined that NS oil had antibacterial and anti-corona virus activity when used in conjunction with photodynamic treatment based on methylene blue to treat wound infections.


Subject(s)
Coronavirus , Photochemotherapy , Wound Infection , Humans , Staphylococcus aureus , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy
13.
Microb Cell Fact ; 22(1): 173, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670273

ABSTRACT

BACKGROUND: Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS: FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1ß expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1ß expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS: These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.


Subject(s)
Nanoparticles , Seaweed , Selenium , Animals , Rats , Antioxidants , Cyclooxygenase 2 , Anti-Inflammatory Agents , Antibodies
14.
Environ Sci Pollut Res Int ; 30(47): 104814-104832, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713082

ABSTRACT

The removal of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using three dried seaweeds Ulva intestinalis Linnaeus (green alga), Sargassum latifolium (Turner) C.Agardh (brown alga), and Corallina officinalis Kützing (red alga) has been shown to evaluate their potential usage as inexpensive adsorbents. Under natural environmental conditions, numerous analytical methods, including zeta potential, energy dispersive X-ray spectroscopy (EDX), SEM, and FT-IR, are used in this study. The results showed that n-alkanes and polycyclic aromatic hydrocarbons adsorption increased with increasing contact time for all three selected algae, with a large removal observed after 15 days, while the optimal contact time for heavy metal removal was 3 h. S. latifolium dry biomass had more potential as bioadsorbent, followed by C. officinalis and then U. intestinalis. S. latifolium attained removal percentages of 65.14%, 72.50%, and 78.92% for light n-alkanes, heavy n-alkanes, and polycyclic aromatic hydrocarbons (PAHs), respectively, after 15 days. Furthermore, it achieved removal percentages of 94.14, 92.62, 89.54, 87.54, 82.76, 80.95, 77.78, 73.02, and 71.62% for Mg, Zn, Cu, Fe, Cr, Pb, Cd, Mn, and Ni, respectively, after 3 h. Carboxyl and hydroxyl from FTIR analysis took part in wastewater treatment. The zeta potentials revealed that algal cells have a negatively charged surface, and the cell surface of S. latifolium has a more negative surface charge than U. intestinalis and C. officinalis. Our study suggests that seaweeds could play an important role in wastewater treatment and thus help as an economical, effective, and ecofriendly bioremediation system for ecological health and life protection.


Subject(s)
Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Seaweed , Alkanes , Wastewater , Polycyclic Aromatic Hydrocarbons/analysis , Biodegradation, Environmental , Spectroscopy, Fourier Transform Infrared , Seaweed/chemistry , Metals, Heavy/analysis
15.
Plants (Basel) ; 12(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631110

ABSTRACT

Microalgae-based biodiesel synthesis is currently not commercially viable due to the high costs of culture realizations and low lipid yields. The main objective of the current study was to determine the possibility of growing Nannochloropsis oceanica on Saccharomyces cerevisiae yeast wastewater for biodiesel generation at an economical rate. N. oceanica was grown in Guillard F/2 synthetic medium and three dilutions of yeast wastewater (1, 1.25, and 1.5%). Biodiesel properties, in addition to carbohydrate, protein, lipid, dry weight, biomass, lipid productivity, amino acids, and fatty acid methyl ester (FAMEs) content, were analyzed and the quality of the produced biodiesel is assessed. The data revealed the response of N. oceanica to nitrogen-deficiency in the three dilutions of yeast wastewater. N. oceanica in Y2 (1.25%) yeast wastewater dilution exhibited the highest total carbohydrate and lipid percentages (21.19% and 41.97%, respectively), and the highest lipid productivity (52.46 mg L-1 day -1) under nitrogen deficiency in yeast wastewater. The fatty acids profile shows that N. oceanica cultivated in Y2 (1.25%) wastewater dilution provides a significant level of TSFA (47.42%) and can be used as a feedstock for biodiesel synthesis. In addition, N. oceanica responded to nitrogen shortage in wastewater dilutions by upregulating the gene encoding delta-9 fatty acid desaturase (Δ9FAD). As a result, the oleic and palmitoleic acid levels increased in the fatty acid profile of Y2 yeast wastewater dilution, highlighting the increased activity of Δ9FAD enzyme in transforming stearic acid and palmitic acid into oleic acid and palmitoleic acid. This study proved that the Y2 (1.25%) yeast wastewater dilution can be utilized as a growth medium for improving the quantity of specific fatty acids and lipid productivity in N. oceanica that affect biodiesel quality to satisfy global biodiesel requirements.

16.
Environ Monit Assess ; 195(9): 1040, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37582905

ABSTRACT

The present study attempted to test the applicability of using phytoplankton as a bioindicator for assessing water quality along the Eastern Alexandria coast, Egypt. Eight stations were selected to cover the different characteristics of seawater during the summer 2022. Six algal groups were detected in different ratios: Bacillariophyceae, Cyanophyceae, Dinophyceae, Chlorophyceae, Silicoflagellata, and Euglenophyceae. Phytoplankton abundance was found highest at the Port Said (PS) beach, and the lowest abundance was detected at Ras El Bar (RB) beach. According to the evaluation of phytoplankton abundance, all the studied stations are oligotrophic state except PS was eutrophic. Based on Chl a concentration, the selected stations could be described as good-bad from west to east. The Shannon diversity and Pielou evenness indexes classified the studied stations as being moderate pollution except for PS and RB stations. The existence of organic pollution indicators species like Navicula, Synedra, and Euglena is a warning indication of the declining water quality especially in B and M stations. The biochemical compositions of the collected phytoplankton were spatial fluctuated. Protein and carbohydrates were the dominant macromolecules in the phytoplankton community compared with lipids. These macromolecules are used to assess trophic states whereas the ratio between protein and carbohydrate > 1 represents a healthy coast as observed in some stations. Thus, phytoplankton should be considered a bioindicator within Water Framework Directive monitoring programs for the Mediterranean Sea. For the long-term monitoring of the Mediterranean Sea's ecosystem, it is recommended that the macromolecules of phytoplankton should be determined.


Subject(s)
Diatoms , Phytoplankton , Egypt , Ecosystem , Mediterranean Sea , Environmental Biomarkers , Environmental Monitoring , Seasons
17.
BMC Chem ; 17(1): 108, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653427

ABSTRACT

INTRODUCTION: The textile, paper, rubber, plastic, leather, cosmetics, pharmaceutical, and food sectors extensively use malachite green (MG). In spite of this, it has mutagenic, carcinogenic, teratogenic, and, in some circumstances causes chronic respiratory disease. OBJECTIVES: In this work, we used sodium alginate, Sargassum latifolium aqueous extract, and their silver nanoparticles to test their potential as inexpensive adsorbent agents to remove malachite green dye from aqueous solutions. METHODS: The removal rate of MG was determined using a series of bioadsorption experiments. Besides, the effect of different factors on bioadsorption, such as pH, adsorbent dose, contact time (min), and different concentrations of MG dye was investigated. RESULTS: The removal efficiency of MG dye by alginate nanoparticles, alginate, Sargassum latifolium aqueous extract, and S. latifolium aqueous extract nanoparticles was 91, 82, 84, and 68 respectively. The optimal conditions for bioadsorption of malachite green dye were pH 7, a contact time of 180 min, and an adsorbent dose of 0.02 g. The adsorption isotherm was fitted to Langmuir and Freundlich isotherm. Also, UV and FT-IR before and after the bioadsorption of MG were performed to confirm the bioadsorption process. CONCLUSION: Our results indicated that alginate nanoparticles were the most effective bioadsorbent agent.

18.
Environ Monit Assess ; 195(8): 929, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432473

ABSTRACT

The majority of textile wastes are made up of toxic dyes. Additionally, because these compounds are soluble, wastewater may include significant concentrations. In this work, the green alga Lychaete pellucida is used for the bioremoval of four common azo dyes, Reactive Blue 4 (RB4), Reactive Red 120 (RR120), Reactive Brilliant Yellow 3G (RBY3G), and Reactive Green12 (RG12), with the application of two models of sorption isotherms, Langmuir and Freundlich. The spectrophotometer method was used to identify optimum conditions (temperature, pH, dye concentrations, algal biomass, and contact time) to remove these dyes onto dry freshwater macroalgae. The optimum pH for L. pellucida was 8. The optimum biosorbent amount is 2 g/L. Then, the best-removed dye concentration was 5 mg/L, the optimum contact duration was 120 min, and the optimum temperature was 25 °C. Under optimum conditions, the percent of dye removal was about 95% for all used azo dyes. This is the first report on the use of Lychaete pellucida for the efficient biodegradation of hazardous azo dyes.


Subject(s)
Chlorophyta , Seaweed , Environmental Monitoring , Azo Compounds , Coloring Agents
19.
Sci Rep ; 13(1): 10188, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349573

ABSTRACT

Green nanotechnology has recently been recognized as a more proper and safer tool for medical applications thanks to its natural reductions with low toxicity and avoidance of injurious chemicals. The macroalgal biomass was used for nanocellulose biosynthesis. Algae are abundant in the environment and have a high content of cellulose. In our study, we extracted parent cellulose from Ulva lactuca where consecutive treatments extracted cellulose to obtain an insoluble fraction rich in cellulose. The extracted cellulose has the same results obtained by matching it with reference cellulose, especially the same Fourier transform infrared (FTIR) and X-Ray diffraction (XRD) analysis peaks. Nanocellulose was synthesized from extracted cellulose with hydrolysis by sulfuric acid. Nanocellulose was examined by Scanning electron microscope (SEM) shown by a slab-like region as Fig. 4a and Energy dispersive X-ray (EDX) to examine the chemical composition. The size of nanocellulose in the range of 50 nm is calculated by XRD analysis. Antibacterial examination of nanocellulose was tested against Gram+ bacteria like Staphylococcus aureus (ATCC6538), Klebsiella pneumonia (ST627), and Gram-negative bacteria such as Escherichia coli (ATCC25922), and coagulase-negative Staphylococci (CoNS) to give 4.06, 4.66, 4.93 and 4.43 cm as respectively. Comparing the antibacterial effect of nanocellulose with some antibiotics and estimating minimal Inhibitory Concentration (MIC) of nanocellulose. We tested the influence of cellulose and nanocellulose on some fungi such as Aspergillus flavus, Candida albicans, and Candida tropicalis. These results demonstrate that nanocellulose could be developed as an excellent solution to these challenges, making nanocellulose extracted from natural algae a very important medical material that is compatible with sustainable development.


Subject(s)
Cellulose , Ulva , Cellulose/chemistry , Polymers , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared
20.
BMC Microbiol ; 23(1): 106, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072731

ABSTRACT

Various antibiotics are available, including gentamicin, chloramphenicol, ampicillin, amoxicillin, and streptomycin, but they have some restrictions. Many microorganisms are resistant to these medications. A new antimicrobial source must be found or developed to solve this issue. Inhere, extract from seaweeds Ulva lactuca was investigated for its antibacterial activity using a well diffusion assay against Klebsiella pneumoniae, and a promising inhibition zone diameter was recorded to be 14.04 mm. The biochemical structure of the antibacterial compound was determined via GC-MS and FTIR analysis. Also, a micro-dilution assay was used to calculate the minimum concentration that makes inhibition (MIC) to be 1.25 mg/ml from U. extract reliable to prevent the visibility of any bacterial growth, this was followed by examining the antibacterial effect of U. Lactuca methanolic extract alone and the synergetic effect of U. Lactuca methanolic extract in combination with two different antibiotics (gentamicin and chloramphenicol). This was assayed by the agar well diffusion method to achieve promising and strong inhibiting power against K. pneumoniae. It was deduced that the maximum synergism could be achieved by adding 2.5 mg/ml of Ulva methanolic extract to gentamicin (4 µg/ml), and the results were illustrated obviously via transmission electron microscope in which severe morphological deteriorations were experienced by the treated cells. From this study, we can conclude that U. lactucae extract has the power to aid antibiotics in reducing the growth of pathogenic K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Ulva , Anti-Bacterial Agents/chemistry , Ulva/chemistry , Klebsiella pneumoniae , Methanol , Microbial Sensitivity Tests , Chloramphenicol/pharmacology , Gentamicins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...