Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Oncol Lett ; 25(2): 46, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36644133

ABSTRACT

Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.

2.
Int J Oncol ; 62(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36579669

ABSTRACT

Genetic alterations drive tumor onset and progression. However, the cross­talk between tumor cells and the benign components of the surrounding stroma can also promote the initiation, progression and metastasis of solid tumors. These cellular and non­cellular stromal components form the tumor microenvironment (TME), which co­evolves with tumor cells. Their dynamic and mutualistic interactions are currently considered to be among the distinctive hallmarks of cancer. Biochemical and physical cues from the TME serve an essential role in regulating tumor onset and progression. They are also associated with resistance to treatment and poor prognosis in patients with cancer. Therefore, a deep understanding of the TME is vital for developing potent anticancer therapeutics and improving patient outcomes. The present review aims to review the biology of both cellular and non­cellular constituents of the TME and novel findings regarding their contribution to core as well as emerging cancer hallmarks. The present review also describes key TME markers that are either targeted in interventional clinical trials or serve as promising potential anticancer therapies. Understanding TME components and their intercellular interactions is key toward identifying the mechanisms of progression and treatment resistance. Such understanding is of utmost significance for personalized and effective cancer therapy strategies.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Neoplasms/pathology
3.
Oncol Rep ; 48(5)2022 11.
Article in English | MEDLINE | ID: mdl-36102321

ABSTRACT

Cancer still ranks as one of the top causes of morbidity and mortality despite recent improvements in standard chemotherapy, radiotherapy, and surgery. This underlines some of the difficulties in creating successful therapeutic strategies, but it also highlights the shortcomings of conventional methods. In order to enhance the standard treatment of cancer patients, biology­driven therapies are emerging towards more specific and effective clinical options. In the present review, both conventional and novel methods for cancer treatment were addressed, with a particular focus on Glioblastoma multiforme (GBM) therapies. GBM is one of the most challenging cancers for conventional treatments, and survival rates of patients remain very low. In the present review, focus was addressed on employed chemo­ and radiotherapies along with developing novel targeted and immunotherapies assessed in clinical trials on patients with GBM or yet to be evaluated clinically. It was aimed to evaluate efficiency of treatments in suppressing GBMs, roadblocks and challenges. A brief discussion of a few promising delivery methods for targeted drug and gene therapy for cancer was also provided. Increment advancements in this field emphasizes the significance of combining different treatment strategies for improved survival and quality of patients' lives.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Drug Delivery Systems , Glioblastoma/drug therapy , Glioblastoma/therapy , Humans , Immunotherapy
4.
Hum Cell ; 35(1): 23-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34761350

ABSTRACT

The tumor microenvironment contributes significantly to tumor initiation, progression, and resistance to chemotherapy. Much of our understanding of the tumor and its microenvironment is developed using various methods of cell culture. Throughout the last two decades, research has increasingly shown that 3D cell culture systems can remarkably recapitulate the complexity of tumor architecture and physiology compared to traditional 2D models. Unlike the flat culture system, these novel models enabled more cell-cell and cell-extracellular matrix interactions. By mimicking in vivo microenvironment, 3D culture systems promise to become accurate tools ready to be used in diagnosis, drug screening, and personalized medicine. In this review, we discussed the importance of 3D culture in simulating the tumor microenvironment and focused on the effects of cancer cell-microenvironment interactions on cancer behavior, resistance, proliferation, and metastasis. Finally, we assessed the role of 3D cell culture systems in the contexts of drug screening. 2D culture system is used to study cancer cell growth, progression, behavior, and drug response. It provides contact between cells and supports paracrine crosstalk between host cells and cancer cells. However, this system fails to simulate the architecture and the physiological aspects of in vivo tumor microenvironment due to the absence of cell-cell/ cell-ECM interactions as well as unlimited access to O2 and nutrients, and the absence of tumor heterogeneity. Recently advanced research has led researchers to generate 3D culture system that can better recapitulate the in vivo environment by providing hypoxic medium, facilitating cell-cell and cell-ECM, interactions, and recapitulating heterogeneity of the tumor. Several approaches are used to maintain and expand cancer cells in 3D culture systems such as tumor spheroids (cell aggregate that mimics the in vivo growth of tumor cells), scaffold-based approaches, bioreactors, microfluidic derives, and organoids. 3D systems are currently used for disease modeling and pre-clinical drug testing.


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Neoplasms/pathology , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Cell Communication , Cell Proliferation , Disease Progression , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor/methods , Extracellular Matrix , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Tumor Cells, Cultured
5.
Eur J Cell Biol ; 101(1): 151197, 2022 01.
Article in English | MEDLINE | ID: mdl-34958986

ABSTRACT

Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.


Subject(s)
Adenocarcinoma , GTPase-Activating Proteins/genetics , Podosomes , Tumor Suppressor Proteins/genetics , cdc42 GTP-Binding Protein/genetics , Cell Line, Tumor , Humans , Neoplasm Invasiveness
6.
Pancreas ; 50(8): 1187-1194, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34714283

ABSTRACT

OBJECTIVES: Pancreatic cancer is one of the most aggressive solid cancers and the fourth leading cause of cancer death in men and women. We previously showed that arginine depletion, using arginase I [HuArgI(Co)-PEG5000], selectively triggers cell death by autophagy in PANC-1 pancreatic cancer cells. The mechanism of action of [HuArgI(Co)-PEG5000], however, has remained poorly understood. In this study, we investigated the effects of arginine depletion on PANC-1 cell migration, adhesion, and invasion and determined the main molecular targets, which mediate PANC-1 cell response to treatment with HuArgI(Co)-PEG5000. METHODS: This was done through examining 2-dimensional (2D) cell motility assays (wound healing and time lapse), cell adhesion, and cell invasion assays, as well as immunostaining for focal adhesions and invadopodia in cells without or with the treatment with arginase. RESULTS: We demonstrate that arginine depletion decreases PANC-1 2D cell migration, adhesion, and 3D invasion. Moreover, our data suggest that these effects are mediated by autophagy and subsequent decrease in the activation of members of Ras homolog gene family (Rho) GTPase family. CONCLUSIONS: Altogether, these findings uncover the mechanism of action of [HuArgI(Co)-PEG5000] and highlight the promising and selective anticancer potential for arginine depletion in the treatment of pancreatic cancer cells.


Subject(s)
Arginase/pharmacology , Autophagy/drug effects , Cell Movement/drug effects , Pancreatic Neoplasms/metabolism , Arginine/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Polyethylene Glycols/pharmacology , Recombinant Proteins/pharmacology
7.
Oncol Lett ; 22(3): 655, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34386077

ABSTRACT

Conventional cancer treatments such as chemotherapy and radiation therapy have reached their therapeutic potential, leaving a gap for developing more effective cancer therapeutics. Cancer cells evade the immune system using various mechanisms of immune tolerance, underlying the potential impact of immunotherapy in the treatment of cancer. Immunotherapy includes several approaches such as activating the immune system in a cytokine-dependent manner, manipulating the feedback mechanisms involved in the immune response, enhancing the immune response via lymphocyte expansion and using cancer vaccines to elicit long-lasting, robust responses. These techniques can be used as monotherapies or combination therapies. The present review describes the immune-based mechanisms involved in tumor cell proliferation and maintenance and the rationale underlying various treatment methods. In addition, the present review provides insight into the potential of immunotherapy used alone or in combination with various types of therapeutics.

8.
Cells Dev ; 165: 203656, 2021 03.
Article in English | MEDLINE | ID: mdl-34024335

ABSTRACT

Cleft lip and/or palate are a split in the lip, the palate or both. This results from the inability of lip buds and palatal shelves to properly migrate and assemble during embryogenesis. By extracting primary cells from a cleft patient, we aimed at offering a better understanding of the signaling mechanisms and interacting molecules involved in the lip and palate formation and fusion. With Rho GTPases being indirectly associated with cleft occurrence, we investigated the role of the latter in both. First, whole exome sequencing was conducted in a patient with cleft lip and palate. Primary fibroblastic cells originating from the upper right gingiva region were extracted and distinct cellular populations from two individuals were obtained: a control with no cleft phenotype and a patient with a cleft lip and palate. The genetic data showed three candidate variables in ARHGEF18, EPDR1, and CUL7. Next, the molecular data showed no significant change in proliferation rates between healthy patient cells and CL/P patient cells. However, CL/P patient cells showed decreased migration, increased adhesion and presented with a more elongated phenotype. Additionally, RhoA activity was upregulated in these cells, whereas Cdc42 activity was downregulated, resulting in loss of polarity. Our results are suggestive of a possible correlation between a dysregulation of Rho GTPases and the observed phenotype of cleft lip and palate patient cells. This insight into the intramolecular aspect of this disorder helps link the genetic defect with the observed phenotype and offers a possible mechanism by which CL/P occurs.


Subject(s)
Cell Movement , Cleft Lip/enzymology , Cleft Lip/pathology , Cleft Palate/enzymology , Cleft Palate/pathology , rho GTP-Binding Proteins/metabolism , Adolescent , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cleft Lip/genetics , Cleft Palate/genetics , Collagen/pharmacology , Female , Humans , Phenotype , Exome Sequencing , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
9.
Cells Dev ; 166: 203674, 2021 06.
Article in English | MEDLINE | ID: mdl-33994351

ABSTRACT

Orofacial clefts are the most common congenital craniofacial birth defects. They occur from a failure in cell proliferation and fusion of neural crest cells of the lip buds and/or palatal shelves. In this study, we investigate the genetic basis and molecular mechanisms in primary cells derived from a cleft and lip palate patient presenting van der Woude syndrome (VWS). Since mutations in the integrin genes are widely correlated with VWS, Interferon Regulatory Factor 6 (IRF6) screening was conducted in a cohort of 200 participants presenting with orofacial anomalies. Primary fibroblastic cells derived from the upper right gingiva and palatal regions were isolated and two cellular populations from two participants were obtained: a control with no cleft phenotype and a patient with a cleft phenotype typical of van der Woude syndrome (VWS). IRF6 targeted sequencing revealed mutations in two distinct families. Our results showed no alteration in the viability of the CLP/VWS patient cells, suggesting the phenotype associate with the disease is not secondary to a defect in cell proliferation. We did however detect a significant decrease in the migratory ability of the CLP with Van der Woude syndrome (CLP/VWS) patient cells, which could account for the phenotype. When compared to normal cells, patient cells showed a lack of polarization, which would account for their lack of mobility. Patient cells showed protrusions all around the cells and a lack of defined leading edge. This was reflected with actin staining, WAVE2 and Arp2 around the cell, and correlated with an increase in Rac1 activation. Consistently with the increase in Rac1 activation, patient cells showed a loss in the maturation of focal adhesions needed for contractility, which also accounts for the lack in cell migration. Our findings give increased understanding of the molecular mechanisms of VWS and expands the knowledge of van der Woude syndrome (VWS) occurrence by providing a strong molecular evidence that CLP with Van der Woude syndrome (CLP/VWS) phenotype is caused by a defect in normal physiological processes of cells.


Subject(s)
Cell Movement , Cleft Lip/genetics , Cleft Lip/pathology , Cleft Palate/genetics , Cleft Palate/pathology , Interferon Regulatory Factors/genetics , Mutation/genetics , rho GTP-Binding Proteins/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Actin-Related Protein 2/metabolism , Case-Control Studies , Cell Adhesion , Cell Proliferation , Cell Survival , Cells, Cultured , Collagen/metabolism , Cysts/genetics , Cysts/pathology , Female , Genetic Predisposition to Disease , Humans , Interferon Regulatory Factors/metabolism , Lip/abnormalities , Lip/pathology , Male , Models, Biological , Pedigree , Phenotype , Wiskott-Aldrich Syndrome Protein Family/metabolism
10.
Oncol Lett ; 21(2): 163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552281

ABSTRACT

Breast cancer is the leading cause of cancer-associated death among women worldwide. Targeting breast cancer cell metastasis is an important therapeutic approach. The MAPK pathway is a key cell signaling pathway that plays a pivotal role in cellular invasion and migration. Numerous studies have identified the MAPK pathway as a way to target cell survival and motility. The present study treated MBA-MD-231 breast cancer cells with anthrax lethal toxin (LeTx), a potent MAPK inhibitor that selectively cleaves and inactivates all MEKs, as a potential therapeutic method to inhibit breast cancer cell migration. LeTx has been demonstrated to affect breast cancer cell migration. Cells treated with LeTx showed a significant decrease in motility, as observed using wound healing and random 2D motility assays. Additionally, cells treated with LeTx showed an increase in adhesion, which would explain the decrease in migration. Pull-down assays examining the activation status of the members of the Rho family of GTPases revealed an increase in RhoA activation accompanied by a decrease in Cdc42 activation following LeTx treatment. Finally, LeTx mediated a decrease in invasion using a Boyden chamber assay, which could be a result of the decrease in Cdc42 activation. The present study reported the effect of LeTx treatment on the migration, adhesion and invasion of breast cancer cells, demonstrating that this effect was associated with the dysregulation of the Rho GTPases, RhoA and Cdc42.

11.
J Ovarian Res ; 14(1): 13, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33423701

ABSTRACT

Ovarian carcinoma is the second most common malignancy of the female reproductive system and the leading cause of death from female reproductive system malignancies. Cancer cells have increased proliferation rate and thus require high amounts of amino acids, including arginine. L-arginine is a non-essential amino acid synthesized from L-citrulline by the Arginosuccinate synthetase (ASS1) enzyme. We have previously shown that the ovarian cancer cells, SKOV3, are auxotrophic to arginine, and that arginine deprivation by treatment with the genetically engineered human arginase I (HuArgI (Co)-PEG5000) triggers the death of SKOV3 cells by autophagy. In this study we examine the effect of HuArgI (Co)-PEG5000 on ovarian cancer cell migration and we dissect the mechanism involved. Wound healing assays, 2D random cell migration assays and cell adhesion analysis indicate that arginine deprivation decreases SKOV3 cell migration and adhesion. This effect was mimicked when autophagy was induced through rapamycin and reversed with the autophagy inhibitor chloroquine when autophagy was inhibited. This proved that arginine deprivation leads to the inhibition of cancer cell migration through autophagy, in addition to cell death. In addition, we were able to establish through pull-down assays and reversal experiments, that arginine deprivation-mediated autophagy inhibits cell migration through a direct inhibition of RhoA, member of the Rho family of GTPases. In conclusion, here we identify, for the first time, an autophagy-mediated inhibition of RhoA that plays an important role in regulating ovarian cancer cells motility and adhesion in response to arginine depletion.


Subject(s)
Arginase/metabolism , Arginine/metabolism , Ovarian Neoplasms/genetics , rhoA GTP-Binding Protein/metabolism , Autophagy , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Ovarian Neoplasms/pathology , Transfection
12.
Hum Cell ; 34(2): 607-623, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33420961

ABSTRACT

Prostate cancer is the second most commonly diagnosed cancer in men and one of the main leading causes of cancer deaths among men worldwide. Rapid uncontrolled growth and the ability to metastasize to other sites are key hallmarks in cancer development and progression. The Rho family of GTPases and its activators the GTPase-activating proteins (GAPs) are required for regulating cancer cell proliferation and migration. StarD13 is a GAP for Rho GTPases, specifically for RhoA and Cdc42. We have previously shown that StarD13 acts as a tumor suppressor in astrocytoma as well as breast and colorectal cancer. In this study, we performed a functional comparative analysis of StarD13 targets/and or interacting molecules to understand the general role that StarD13 plays in cancers. Our data highlight the importance of StarD13 in modulating several hallmarks of cancer. Findings from database mining and immunohistochemistry revealed that StarD13 is underexpressed in prostate cancers, in addition knocking down Stard13 increased cancer cell proliferation, consistent with its role as a tumor suppressor. Stard13 depletion, however, led to an increase in cell adhesion, which inhibited 2D cell migration. Most interestingly, StarD13 depletion increases invasion and matrix degradation, at least in part, through its regulation of Cdc42. Altogether, the data presented suggest that StarD13 acts as a tumor suppressor inhibiting prostate cancer cell invasion.


Subject(s)
Cell Movement/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/physiology , Gene Expression/genetics , Neoplasm Invasiveness/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Cell Line, Tumor , Disease Progression , GTPase-Activating Proteins/metabolism , Humans , Male , Tumor Suppressor Proteins/metabolism , cdc42 GTP-Binding Protein , rho GTP-Binding Proteins , rhoA GTP-Binding Protein
13.
Hum Cell ; 34(1): 152-164, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32979152

ABSTRACT

Deregulating cellular energetics by reprogramming metabolic pathways, including arginine metabolism, is critical for cancer cell onset and survival. Drugs that target the specific metabolic requirements of cancer cells have emerged as promising targeted cancer therapeutics. In this study, we investigate the therapeutic potential of targeting colon cancer cells using arginine deprivation induced by a pegylated cobalt-substituted recombinant human Arginase I [HuArgI (Co)-PEG5000]. Four colon cancer cell lines were tested for their sensitivity to [HuArgI (Co)-PEG5000] as well as for their mechanism of cell death following arginine deprivation. All four cell lines were sensitive to arginine deprivation induced by [HuArgI (Co)-PEG5000]. All cells expressed ASS1 and were rescued from arginine deprivation-induced cytotoxicity by the addition of excess L-citrulline, indicating they are partially auxotrophic for arginine. Mechanistically, cells treated with [HuArgI (Co)-PEG5000] were negative for AnnexinV and lacked caspase activation. Further investigation revealed that arginine deprivation leads to a marked and prolonged activation of autophagy in both Caco-2 and T84 cell lines. Finally, we show that [HuArgI (Co)-PEG5000] causes cell death by sustained activation of autophagy as evidenced by the decrease in cell cytotoxicity upon treatment with chloroquine, an autophagy inhibitor. Altogether, these data demonstrate that colon cancer cells are partially auxotrophic for arginine and sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation. They also show that the activation of autophagy does not play protective roles but rather, induces cytotoxicity and leads to cell death.


Subject(s)
Arginase/adverse effects , Arginine/deficiency , Arginine/genetics , Autophagy/genetics , Autophagy/physiology , Cell Death/genetics , Colonic Neoplasms/pathology , Polyethylene Glycols/adverse effects , Arginine/metabolism , Cell Line, Tumor , Humans
14.
Cell Commun Signal ; 18(1): 144, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900380

ABSTRACT

BACKGROUND: Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. METHODS: We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. RESULTS: We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. CONCLUSION: In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases. Video abstract.


Subject(s)
Adenocarcinoma of Lung/metabolism , GTPase-Activating Proteins/metabolism , Lung Neoplasms/metabolism , Podosomes/metabolism , Tumor Suppressor Proteins/metabolism , rho GTP-Binding Proteins/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Cell Movement , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Podosomes/pathology
15.
Tissue Cell ; 65: 101364, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32746999

ABSTRACT

Cells detect external stimuli through cell-surface receptors. In cases where the stimulus is a cytokine or a growth factor, the cell responds by inducing modifications in the actin cytoskeleton. These changes are mediated through the Rho family of GTPases. Among these GTPases, RhoA, Rac1 and Cdc42 have been extensively studied. The activity of these proteins is closely monitored and tightly regulated through Guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn the "switch" on and off respectively. Crosstalk between Rho GTPases has been long studied; yet many questions are raised regarding the spatiotemporal regulation of these GTPases, particularly RhoA and Rac1. This review sheds a light on the antagonistic relationship between both GTPases and puts emphasis on the importance of cycling of RhoA activation at the focal adhesions for optimal cell migration.


Subject(s)
rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cell Adhesion , Cell Movement , Humans , Models, Biological
16.
Anal Cell Pathol (Amst) ; 2020: 2097214, 2020.
Article in English | MEDLINE | ID: mdl-32377503

ABSTRACT

Vascular endothelial growth factors (VEGFs) consist of five molecules (VEGFA through D as well as placental growth factor) which are crucial for regulating key cellular and tissue functions. The role of VEGF and its intracellular signaling and downstream molecular pathways have been thoroughly studied. Activation of VEGF signal transduction can be initiated by the molecules' binding to two classes of transmembrane receptors: (1) the VEGF tyrosine kinase receptors (VEGF receptors 1 through 3) and (2) the neuropilins (NRP1 and 2). The involvement of Rho GTPases in modulating VEGFA signaling in both cancer cells and endothelial cells has also been well established. Additionally, different isoforms of Rho GTPases, namely, RhoA, RhoC, and RhoG, have been shown to regulate VEGF expression as well as blood vessel formation. This review article will explore how Rho GTPases modulate VEGF signaling and the consequences of such interaction on cancer progression.


Subject(s)
Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Neoplasms/metabolism , Neovascularization, Pathologic/pathology
17.
Cancer Cell Int ; 20: 150, 2020.
Article in English | MEDLINE | ID: mdl-32390765

ABSTRACT

Arginine is a semi essential amino acid that is used in protein biosynthesis. It can be obtained from daily food intake or synthesized in the body through the urea cycle using l-citrulline as a substrate. Arginine has a versatile role in the body because it helps in cell division, wound healing, ammonia disposal, immune system, and hormone biosynthesis. It is noteworthy that l-arginine is the precursor for the biosynthesis of nitric oxide (NO) and polyamines. In the case of cancer cells, arginine de novo synthesis is not enough to compensate for their high nutritional needs, forcing them to rely on extracellular supply of arginine. In this review, we will go through the importance of arginine deprivation as a novel targeting therapy by discussing the different arginine deprivation agents and their mechanism of action. We will also focus on the factors that affect cell migration and on the influence of arginine on metastases through polyamine and NO.

18.
Hum Cell ; 33(3): 437-443, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32274657

ABSTRACT

StarD13 is a tumor suppressor and a GTPase activating protein (GAP) for Rho GTPases. Thus, StarD13 regulates cell survival pathways and induces apoptosis in a p53-dependent and independent manners. In tumors, StarD13 is either downregulated or completely inhibited, depending on the tumor type. As such, and through the dysregulation of Rho GTPases, this affects adhesion dynamics, actin dynamics, and leads to an increase or a decrease in tumor metastasis depending on the tumor grade and type. Being a key regulatory protein, StarD13 is a potential promising candidate for therapeutic approaches. This paper reviews the key characteristics of this protein and its role in tumor malignancies.


Subject(s)
GTPase-Activating Proteins/genetics , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Amino Acid Sequence , Down-Regulation , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/metabolism , Genes, Tumor Suppressor , Humans , Neoplasms/pathology , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , rho GTP-Binding Proteins
19.
Anal Cell Pathol (Amst) ; 2020: 9274016, 2020.
Article in English | MEDLINE | ID: mdl-32089990

ABSTRACT

Astrocytomas are primary malignant brain tumors that originate from astrocytes. Grade IV astrocytoma or glioblastoma is a highly invasive tumor that occur within the brain parenchyma. The Rho family of small GTPases, which includes Rac1, Cdc42, and RhoA, is an important family whose members are key regulators of the invasion and migration of glioblastoma cells. In this review, we describe the role played by the Rho family of GTPases in the regulation of the invasion and migration of glioblastoma cells. Specifically, we focus on the role played by RhoA, Rac1, RhoG, and Cdc42 in cell migration through rearrangement of actin cytoskeleton, cell adhesion, and invasion. Finally, we highlight the importance of potentially targeting Rho GTPases in the treatment of glioblastoma.


Subject(s)
Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Glioblastoma/enzymology , Glioblastoma/pathology , Neoplasm Invasiveness/pathology , rho GTP-Binding Proteins/metabolism , Animals , Cell Movement/physiology , Humans
20.
Invest New Drugs ; 38(1): 10-19, 2020 02.
Article in English | MEDLINE | ID: mdl-30887252

ABSTRACT

In this study, we assess arginine auxotrophy in ovarian cancer cells and attempt to target them using arginine deprivation induced by a pegylated recombinant human Arginase I cobalt [HuArgI (Co)-PEG5000]. Ovarian cancer cells were sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation with IC50 values in the low pM range. Addition of excess L-citrulline rescued only one of three cell lines tested, indicating that the majority of cell lines are completely auxotrophic for arginine. The expression pattern of argininosuccinate synthetase (ASS1) confirmed the degree of auxotrophy of ovarian cancer cell lines with completely auxotrophic cells not expressing ASS1 and partially auxotrophic cells expressing the enzyme. Ovarian cancer cell lines were negative for annexinV staining while showing loss of membrane integrity and absence of caspase activation, indicating caspase-independent, non-apoptotic cell death. [HuArgI (Co)-PEG5000]-induced arginine deprivation led to extensive and prolonged activation of autophagy, which proved to be deleterious to cell survival since its inhibition led to a significant decrease in cytotoxicity. This indicates that the activation of autophagy following arginine-deprivation, rather than being protective, mediates cell cytotoxicity leading to death by autophagy.


Subject(s)
Arginase/administration & dosage , Arginine/deficiency , Autophagy , Ovarian Neoplasms/pathology , Polyethylene Glycols/administration & dosage , Apoptosis , Arginase/chemistry , Cell Proliferation , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Polyethylene Glycols/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...