Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 12462, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127535

ABSTRACT

Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson's disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe's disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.


Subject(s)
Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Psychosine/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Dopamine/metabolism , Galactosylceramidase/metabolism , Humans , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism
2.
Mol Ther ; 26(3): 730-743, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29433936

ABSTRACT

Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties.


Subject(s)
Cardiovirus Infections/complications , Cardiovirus Infections/virology , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , MicroRNAs/genetics , Theilovirus , Viral Load , Animals , Biomarkers , Cell Line , Cholesterol/metabolism , Cytokines/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Female , Fibrinogen/metabolism , Gene Expression Regulation , Inflammation Mediators/metabolism , Lipid Metabolism/genetics , Mice , Microglia/metabolism , RNA Interference , Rats
3.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29433937

ABSTRACT

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Subject(s)
Carbohydrate Metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Genetic Therapy , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Phenotype , Animals , Autonomic Pathways/metabolism , Autonomic Pathways/pathology , Autonomic Pathways/ultrastructure , Axons/metabolism , Axons/pathology , Axons/ultrastructure , Behavior, Animal , Brain/metabolism , Dependovirus/genetics , Disease Models, Animal , Female , Gene Expression , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/pharmacokinetics , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/therapy , Male , Mice , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Tissue Distribution , Transduction, Genetic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...