Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Metab ; 86: 101979, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945296

ABSTRACT

OBJECTIVE: Bariatric surgery is an effective treatment to obesity, leading to weight loss and improvement in glycemia, that is characterized by hypersecretion of gastrointestinal hormones. However, weight regain and relapse of hyperglycemia are not uncommon. We set to identify mechanisms that can enhance gastrointestinal hormonal secretion following surgery to sustain weight loss. METHODS: We investigated the effect of somatostatin (Sst) inhibition on the outcomes of bariatric surgery using a mouse model of sleeve gastrectomy (SG). RESULTS: Sst knockout (sst-ko) mice fed with a calorie-rich diet gained weight normally and had a mild favorable metabolic phenotype compared to heterozygous sibling controls, including elevated plasma levels of GLP-1. Mathematical modeling of the feedback inhibition between Sst and GLP-1 showed that Sst exerts its maximal effect on GLP-1 under conditions of high hormonal stimulation, such as following SG. Obese sst-ko mice that underwent SG had higher levels of GLP-1 compared with heterozygous SG-operated controls. The SG-sst-ko mice regained less weight than controls and maintained lower glycemia months after surgery. Obese wild-type mice that underwent SG and were treated daily with a Sst receptor inhibitor for two months had higher GLP-1 levels, regained less weight, and improved metabolic profile compared to saline-treated SG-operated controls, and compared to inhibitor or saline-treated sham-operated obese mice. CONCLUSIONS: Our results suggest that inhibition of Sst signaling enhances the long-term favorable metabolic outcomes of bariatric surgery.


Subject(s)
Gastrectomy , Glucagon-Like Peptide 1 , Mice, Knockout , Obesity , Somatostatin , Animals , Somatostatin/metabolism , Mice , Gastrectomy/methods , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood , Obesity/metabolism , Obesity/surgery , Male , Bariatric Surgery/methods , Mice, Inbred C57BL , Weight Loss , Blood Glucose/metabolism , Mice, Obese
2.
J Neuroinflammation ; 19(1): 5, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991645

ABSTRACT

BACKGROUND: Neurodegeneration is considered the consequence of misfolded proteins' deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases. We hypothesized that systemic microbial pathogens may accelerate neurodegeneration in Alzheimer's disease (AD) and that microglia play a central role in this process. METHODS: We examined the effect of an infectious environment and of microbial Toll-like receptor (TLR) agonists on cortical neuronal loss and on microglial phenotype in wild type versus 5xFAD transgenic mice, carrying mutated genes associated with familial AD. RESULTS: We examined the effect of a naturally bred environment on the neurodegenerative process. Earlier and accelerated cortical neuron loss occurred in 5xFAD mice housed in a natural ("dirty") environment than in a specific-pathogen-free (SPF) environment, without increasing the burden of Amyloid deposits and microgliosis. Neuronal loss occurred in a microglia-rich cortical region but not in microglia-poor CA regions of the hippocampus. Environmental exposure had no effect on cortical neuron density in wild-type mice. To model the neurodegenerative process caused by the natural infectious environment, we injected systemically the bacterial endotoxin lipopolysaccharide (LPS), a TLR4 agonist PAMP. LPS caused cortical neuronal death in 5xFAD, but not wt mice. We used the selective retinoic acid receptor α agonist Am580 to regulate microglial activation. In primary microglia isolated from 5xFAD mice, Am580 markedly attenuated TLR agonists-induced iNOS expression, without canceling their basic immune response. Intracerebroventricular delivery of Am580 in 5xFAD mice reduced significantly the fraction of (neurotoxic) iNOS + microglia and increased the fraction of (neuroprotective) TREM2 + microglia. Furthermore, intracerebroventricular delivery of Am580 prevented neurodegeneration induced by microbial TLR agonists. CONCLUSIONS: Exposure to systemic infections causes neurodegeneration in brain regions displaying amyloid pathology and high local microglia density. AD brains exhibit increased susceptibility to microbial PAMPs' neurotoxicity, which accelerates neuronal death. Microglial modulation protects the brain from microbial TLR agonist PAMP-induced neurodegeneration.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Microglia/pathology , Nerve Degeneration/pathology , Neurons/pathology , Animals , Brain/drug effects , Disease Models, Animal , Lipopolysaccharides/pharmacology , Mice , Mice, Transgenic , Microglia/drug effects , Neurons/drug effects , Phagocytosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL