Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Brain Commun ; 6(2): fcae071, 2024.
Article in English | MEDLINE | ID: mdl-38495305

ABSTRACT

Enlarged perivascular spaces have been previously reported in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, but their significance and pathophysiology remains unclear. We investigated associations of white matter enlarged perivascular spaces with classical imaging measures, cognitive measures and plasma proteins to better understand what enlarged perivascular spaces represent in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and whether radiographic measures of enlarged perivascular spaces would be of value in future therapeutic discovery studies for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Twenty-four individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and 24 age- and sex-matched controls were included. Disease status was determined based on the presence of NOTCH3 mutation. Brain imaging measures of white matter hyperintensity, brain parenchymal fraction, white matter enlarged perivascular space volumes, clinical and cognitive measures as well as plasma proteomics were used in models. White matter enlarged perivascular space volumes were calculated via a novel, semiautomated pipeline, and levels of 7363 proteins were quantified in plasma using the SomaScan assay. The relationship of enlarged perivascular spaces with global burden of white matter hyperintensity, brain atrophy, functional status, neurocognitive measures and plasma proteins was modelled with linear regression models. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and control groups did not exhibit differences in mean enlarged perivascular space volumes. However, increased enlarged perivascular space volumes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.05), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.49, P = 0.04) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.10). In interaction term models, the interaction term between cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease status and enlarged perivascular space volume was associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.02), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.52, P = 0.02), Mini-Mental State Examination score (ß = -1.49, P = 0.03) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.07). Proteins positively associated with enlarged perivascular space volumes were found to be related to leukocyte migration and inflammation, while negatively associated proteins were related to lipid metabolism. Two central hub proteins were identified in protein networks associated with enlarged perivascular space volumes: CXC motif chemokine ligand 8/interleukin-8 and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. The levels of CXC motif chemokine ligand 8/interleukin-8 were also associated with increased white matter hyperintensity volume (ß = 42.86, P = 0.03), and levels of C-C motif chemokine ligand 2/monocyte chemoattractant protein 1 were further associated with decreased brain parenchymal fraction (ß = -0.0007, P < 0.01) and Mini-Mental State Examination score (ß = -0.02, P < 0.01) and increased Trail Making Test B completion time (ß = 0.76, P < 0.01). No proteins were associated with all three studied imaging measures of pathology (brain parenchymal fraction, enlarged perivascular spaces, white matter hyperintensity). Based on associations uncovered between enlarged perivascular space volumes and cognitive functions, imaging and plasma proteins, we conclude that white matter enlarged perivascular space volumes may capture pathologies contributing to chronic brain dysfunction and degeneration in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

2.
Alzheimers Dement (N Y) ; 9(3): e12412, 2023.
Article in English | MEDLINE | ID: mdl-37766832

ABSTRACT

Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS: Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.

3.
Stroke ; 54(10): e452-e464, 2023 10.
Article in English | MEDLINE | ID: mdl-37602377

ABSTRACT

Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.


Subject(s)
CADASIL , Dementia, Vascular , Humans , CADASIL/diagnosis , CADASIL/genetics , CADASIL/therapy , Receptor, Notch3/genetics , American Heart Association , Dementia, Vascular/genetics , Dementia, Vascular/therapy , Cerebral Infarction , Mutation/genetics , Receptors, Notch/genetics , Magnetic Resonance Imaging
4.
Cereb Circ Cogn Behav ; 5: 100170, 2023.
Article in English | MEDLINE | ID: mdl-37441712

ABSTRACT

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited progressive cerebral microangiopathy with considerable phenotypic variability. The purpose of this study was to describe the generalizability of a recently proposed grading system of CADASIL across multiple centers in the United States. Methods: Electronic medical records (EMR) of an initial neurological assessment of adult patients with confirmed CADASIL were reviewed across 5 tertiary referral medical centers with expertise in CADASIL. Demographic, vascular risk factors, and neuroimaging data were abstracted from EMR. Patients were categorized into groups according to the proposed CADASIL grading system: Grade 0 (asymptomatic), Grade 1 (migraine only), Grade 2 (stroke, TIA, or MCI), Grade 3 (gait assistance or dementia), and Grade 4 (bedbound or end-stage). Inter-rater reliability (IRR) of grading was tested in a subset of cases. Results: We identified 138 patients with a mean age of 50.9 ± 13.1 years, and 57.2% were female. The IRR was acceptable over 33 cases (κ=0.855, SD 0.078, p<0.001) with 81.8% being concordant. There were 15 patients (10.9%) with Grade 0, 50 (36.2%) with Grade 1, 61 (44.2%) with Grade 2, 12 (8.7%) with Grade 3, and none with Grade 4. Patients with a lower severity grade (grade 0 vs 3) tended to be younger (49.5 vs. 61.9 years) and had a lower prevalence of hypertension (50% vs. 20%, p = 0.027) and diabetes mellitus (0% vs. 25%, p = 0.018). A higher severity grade was associated with an increased number of vascular risk factors (p = 0.02) and independently associated with hypertension and diabetes (p<0.05). Comparing Grade 0 vs. 3, cortical thickness tended to be greater (2.06 vs. 1.87 mm; p = 0.06) and white matter hyperintensity volume tended to be lower (54.7 vs. 72.5 ml; p = 0.73), but the differences did not reach significance. Conclusion: The CADASIL severity grading system is a pragmatic, reliable system for characterizing CADASIL phenotype that does not require testing beyond that done in standard clinical practice. Higher severity grades tended to have a higher vascular risk factor burden. This system offers a simple method of categorizing CADASIL patients which may help to describe populations in observational and interventional studies.

5.
Cell Rep Med ; 4(6): 101089, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37343515

ABSTRACT

A large interventional trial, the Systolic Blood Pressure Intervention Trial sub-study termed Memory and Cognition in Decreased Hypertension (SPRINT-MIND), found reduced risk of cognitive impairment in older adults with intensive, relative to standard, blood-pressure-lowering targets (systolic BP < 120 vs. <140 mm Hg). In this perspective, we discuss key questions and make recommendations for clinical practice and for clinical trials, following SPRINT-MIND. Future trials should embody cognitive endpoints appropriate to the participant group, ideally with adaptive designs that ensure robust answers for cognitive and cardiovascular endpoints. Reliable data from diverse populations, including the oldest-old (age > 80 years), will maximize external validity and global implementation of trial findings. New biomarkers will improve phenotyping to stratify patients to optimal treatments. Currently no antihypertensive drug class stands out for dementia risk reduction. Multi-domain interventions, incorporating lifestyle change (exercise, diet) alongside medications, may maximize global impact. Given the low cost and wide availability of antihypertensive drugs, intensive BP reduction may be a cost-effective means to reduce dementia risk in diverse, aging populations worldwide.


Subject(s)
Cognitive Dysfunction , Dementia , Hypertension , Humans , Aged , Aged, 80 and over , Hypertension/drug therapy , Hypertension/psychology , Cognitive Dysfunction/drug therapy , Antihypertensive Agents/therapeutic use , Dementia/prevention & control , Internationality
7.
Stroke ; 54(3): 648-660, 2023 03.
Article in English | MEDLINE | ID: mdl-36848423

ABSTRACT

Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Aged , Humans , Aging , Brain Injuries/epidemiology , Brain Injuries/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Dementia/epidemiology , Dementia/etiology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/etiology
8.
Alzheimers Dement ; 19(8): 3339-3349, 2023 08.
Article in English | MEDLINE | ID: mdl-36791265

ABSTRACT

INTRODUCTION: Immune dysfunction is important in aging and neurodegeneration; lacking clinically available tools limits research translation. We tested associations of cerebral spinal fluid (CSF) monocyte-to-lymphocyte ratio (MLR)-innate immune activation surrogate-with cognition in an aging and dementia cohort, hypothesizing that elevated MLR is associated with poorer executive functioning. METHODS: CSF MLR was calculated in well-characterized, genotyped participants enrolled in studies of aging and dementia at University of California, San Francisco Memory and Aging Center (n = 199, mean age 57.5 years, SD 11.9). Linear models tested associations with episodic memory and executive function (verbal fluency, speeded set-shifting). RESULTS: Aging was associated with higher CSF monocyte, lower lymphocyte counts, and higher MLRs (p < 0.001). MLR was associated with verbal fluency (p < 0.05) only. DISCUSSION: Using clinical labs, we show an inverse association between CSF MLR and executive function in aging and dementia, supporting the utility of clinical labs in capturing associations between innate immune dysfunction and neurodegeneration.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognition/physiology , Aging , Cell Count , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
9.
Alzheimers Dement (Amst) ; 14(1): e12338, 2022.
Article in English | MEDLINE | ID: mdl-35814617

ABSTRACT

Introduction: Development of novel diagnostic tools is a top research priority in vascular dementia. A major obstacle is the lack of a simple, non-invasive method to visualize cerebral arteriolar walls in vivo. Retinal arterioles offer a window into the cerebral circulation. Methods: Intensity-based retinal arteriolar visualization in optical coherence tomography (I-bRAVO) was applied to evaluate mean wall thickness (MWT) and wall-to-lumen ratio (WLR) in 250 subjects with sporadic and genetic cerebral small vessel disease (CSVD), non-vascular neurodegenerative diseases (NVND), and healthy controls (HC) in association with imaging and cognitive markers. Results: MWT and WLR were higher in CSVD, associated with severity of vascular white matter lesions, and correlated with magnetic resonance imaging-based intracranial arteriolosclerosis score. WLR correlated with gray and white matter volume and differentiated asymptomatic sporadic CSVD from HC (area under the curve = 0.82). Discussion: I-bRAVO is a rapid, non-invasive tool. MWT and WLR were associated with imaging markers of CSVD and could contribute to early identification of sporadic CSVD.

10.
Article in English | MEDLINE | ID: mdl-35710320

ABSTRACT

BACKGROUND: Chronic demyelination is a major contributor to axonal vulnerability in multiple sclerosis (MS). Therefore, remyelination could provide a potent neuroprotective strategy. The ReBUILD trial was the first study showing evidence for successful remyelination following treatment with clemastine in people with MS (pwMS) with no evidence of disease activity or progression (NEDAP). Whether remyelination was associated with neuroprotection remains unexplored. METHODS: Plasma neurofilament light chain (NfL) levels were measured from ReBUILD trial's participants. Mixed linear effect models were fit for individual patients, epoch and longitudinal measurements to compare NfL concentrations between samples collected during the active and placebo treatment period. RESULTS: NfL concentrations were 9.6% lower in samples collected during the active treatment with clemastine (n=53, geometric mean=6.33 pg/mL) compared to samples collected during treatment with placebo (n=73, 7.00 pg/mL) (B=-0.035 [-0.068 to -0.001], p=0.041). Applying age- and body mass index-standardised NfL Z-scores and percentiles revealed similar results (0.04 vs 0.35, and 27.5 vs 33.3, p=0.023 and 0.042, respectively). Higher NfL concentrations were associated with more delayed P100 latencies (B=1.33 [0.26 to 2.41], p=0.015). In addition, improvement of P100 latencies between visits was associated with a trend for lower NfL values (B=0.003 [-0.0004 to 0.007], p=0.081). Based on a Cohen's d of 0.248, a future 1:1 parallel-arm placebo-controlled study using a remyelinating agent with comparable effect as clemastine would need 202 subjects per group to achieve 80% power. CONCLUSIONS: In pwMS, treatment with the remyelinating agent clemastine was associated with a reduction of blood NfL, suggesting that neuroprotection is achievable and measurable with therapeutic remyelination. TRIAL REGISTRATION NUMBER: NCT02040298.

11.
Brain ; 145(11): 4080-4096, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35731122

ABSTRACT

Focal anterior temporal lobe degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant anterior temporal lobe atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia and semantic dementia, patients with early right anterior temporal lobe atrophy are more difficult to diagnose as their symptoms are less well understood. Focal right anterior temporal lobe atrophy is associated with prominent emotional and behavioural changes, and patients often meet, or go on to meet, criteria for behavioural variant frontotemporal dementia. Uncertainty around early symptoms and absence of an overarching clinico-anatomical framework continue to hinder proper diagnosis and care of patients with right anterior temporal lobe disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with right anterior temporal lobe-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of behavioural variant frontotemporal dementia or semantic variant primary progressive aphasia and a structural MRI (n = 478). On the basis of neuroimaging criteria, we defined three patient groups: right anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the right anterior temporal lobe (n = 79) and left-predominant anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic and pathological profiles of these groups. In the right anterior temporal lobe-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%) and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and faces) and facial affect naming (despite preserved face perception) than the frontal- and left-predominant anterior temporal lobe-predominant groups. The clinical symptoms in the first 3 years of the disease alone were highly sensitive (81%) and specific (84%) differentiating right anterior temporal lobe-predominant from frontal-predominant groups. Frontotemporal lobar degeneration-transactive response DNA binding protein (84%) was the most common pathology of the right anterior temporal lobe-predominant group. Right anterior temporal lobe-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, 'semantic behavioural variant frontotemporal dementia', which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal right anterior temporal lobe degeneration as well as in vivo prediction of frontotemporal lobar degeneration-transactive response DNA binding protein pathology.


Subject(s)
Aphasia, Primary Progressive , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Frontotemporal Dementia/pathology , Semantics , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/pathology , Atrophy , Magnetic Resonance Imaging , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/pathology , DNA-Binding Proteins , Neuropsychological Tests
13.
Alzheimers Dement ; 18(8): 1472-1483, 2022 08.
Article in English | MEDLINE | ID: mdl-34786815

ABSTRACT

INTRODUCTION: Lowering blood pressure (BP) reduces the risk for cognitive impairment and the progression of cerebral white matter lesions. It is unclear whether hypertension control also influences plasma biomarkers related to Alzheimer's disease and non-disease-specific neurodegeneration. METHODS: We examined the effect of intensive (< 120 mm Hg) versus standard (< 140 mm Hg) BP control on longitudinal changes in plasma amyloid beta (Aß)40 and Aß42 , total tau, and neurofilament light chain (NfL) in a subgroup of participants from the Systolic Blood Pressure Intervention Trial (N = 517). RESULTS: Over 3.8 years, there were no significant between-group differences for Aß40, Aß42, Aß42 /Aß40, or total tau. Intensive treatment was associated with larger increases in NfL compared to standard treatment. Adjusting for kidney function, but not BP, attenuated the association between intensive treatment and NfL. DISCUSSION: Intensive BP treatment was associated with changes in NfL, which were correlated with changes in kidney function associated with intensive treatment. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01206062.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides , Biomarkers , Blood Pressure , Humans , Intermediate Filaments , tau Proteins
14.
Geroscience ; 44(1): 25-37, 2022 02.
Article in English | MEDLINE | ID: mdl-34606040

ABSTRACT

White matter pathologies are critically involved in the etiology of vascular cognitive impairment-dementia (VCID), Alzheimer's disease (AD), and Alzheimer's disease and related diseases (ADRD), and therefore need to be considered a treatable target ( Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793-4, [1] . To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of "The Albert Research Institute for White Matter and Cognition" in 2020. The first annual "Institute" meeting was held virtually on March 3-4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust-sponsored workshops (Barone et al. in J Transl Med 14:1-14, [2]; Sorond et al. in GeroScience 42:81-96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop.


Subject(s)
Dementia, Vascular , Leukoencephalopathies , White Matter , Academies and Institutes , Cognition , Humans , Leukoencephalopathies/pathology
15.
J Int Neuropsychol Soc ; 28(6): 588-599, 2022 07.
Article in English | MEDLINE | ID: mdl-34158138

ABSTRACT

OBJECTIVE: There are minimal data directly comparing plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in aging and neurodegenerative disease research. We evaluated associations of plasma NfL and plasma GFAP with brain volume and cognition in two independent cohorts of older adults diagnosed as clinically normal (CN), mild cognitive impairment (MCI), or Alzheimer's dementia. METHODS: We studied 121 total participants (Cohort 1: n = 50, age 71.6 ± 6.9 years, 78% CN, 22% MCI; Cohort 2: n = 71, age 72.2 ± 9.2 years, 45% CN, 25% MCI, 30% dementia). Gray and white matter volumes were obtained for total brain and broad subregions of interest (ROIs). Neuropsychological testing evaluated memory, executive functioning, language, and visuospatial abilities. Plasma samples were analyzed in duplicate for NfL and GFAP using single molecule array assays (Quanterix Simoa). Linear regression models with structural MRI and cognitive outcomes included plasma NfL and GFAP simultaneously along with relevant covariates. RESULTS: Higher plasma GFAP was associated with lower white matter volume in both cohorts for temporal (Cohort 1: ß = -0.33, p = .002; Cohort 2: ß = -0.36, p = .03) and parietal ROIs (Cohort 1: ß = -0.31, p = .01; Cohort 2: ß = -0.35, p = .04). No consistent findings emerged for gray matter volumes. Higher plasma GFAP was associated with lower executive function scores (Cohort 1: ß = -0.38, p = .01; Cohort 2: ß = -0.36, p = .007). Plasma NfL was not associated with gray or white matter volumes, or cognition after adjusting for plasma GFAP. CONCLUSIONS: Plasma GFAP may be more sensitive to white matter and cognitive changes than plasma NfL. Biomarkers reflecting astroglial pathophysiology may capture complex dynamics of aging and neurodegenerative disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , White Matter , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Biomarkers , Cognitive Dysfunction/diagnosis , Executive Function , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Middle Aged , Neurofilament Proteins , White Matter/diagnostic imaging
16.
Alzheimers Dement ; 18(1): 178-190, 2022 01.
Article in English | MEDLINE | ID: mdl-34058063

ABSTRACT

The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.


Subject(s)
Aging/physiology , Alzheimer Disease/epidemiology , Biomedical Research , Disease Progression , Prodromal Symptoms , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Australia/epidemiology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/drug therapy , Humans , Life Style , Positron-Emission Tomography
17.
Cereb Circ Cogn Behav ; 2: 100033, 2021.
Article in English | MEDLINE | ID: mdl-34950896

ABSTRACT

Vascular cognitive impairment (VCI), encompassing vascular dementia, has been claimed as the "second-most common dementia" after Alzheimer Disease. Whether or not this is true, the clinical picture of most dementia in older people includes vascular disease. There are no validated pharmacological targets for prevention or treatment of VCI. This has inspired a multitude of potential treatment approaches, reflected by the articles in this Special Issue. These include in vitro testing of the novel oral anticoagulant dabigatran for protection against ß-amyloid neurotoxicity, and an overview of neuroinflammation in VCI and the role of circulating markers (PIGF, VEGF-D) identified by the MarkVCID study. There are reviews of potential therapeutics, including adrenomedullin and nootropic preparations (exemplified by cerebrolysin). The role of sleep is reviewed, with possible therapeutic targets (5HT2A receptors). There is a clinical study protocol (INVESTIGATE-SVD) and a feasibility analysis for a secondary prevention trial in small vessel disease. Clinical data include secondary analyses of blood pressure and cerebral blood flow from a longitudinal clinical trial (NILVAD), differences between methylphenidate and galantamine responders and non-responders (STREAM-VCI), appraisal of treatment approaches in India, and primary outcomes from a randomised trial of Argentine tango dancing to preserve cognition in African American women (ACT). Treating vascular disease has great potential to improve global cognitive health, with public health impacts alongside individual benefit. Vascular disease burden varies across populations, offering the possibility of proactively addressing health inequity in dementia using vascular interventions. The next 5-10 years will witness cost-effective lifestyle interventions, repurposed drugs and novel therapeutics.

18.
Sci Rep ; 11(1): 16198, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376699

ABSTRACT

We test the hypothesis that endothelial cells adopt an inflammatory phenotype in functionally intact aged human subjects with radiographic evidence of white matter hyperintensity (WMH) suggestive of small cerebrovascular disease. Components of all three complement effector pathways and regulatory proteins were quantified in extracts of plasma endothelial-derived exosomes (EDE) of 11 subjects (age 70-82) with and 15 without evidence of WMH on MRI. Group differences and associations with plasma markers of immune activation (IL6, ICAM1), cognition and neuroimaging were calculated via regression modelling. EDE complement factors within the alternative and classical pathways were found to be higher and regulatory proteins lower in subjects with WMH. EDE levels of some complement components demonstrated significant associations with cognitive slowing and elevated systolic blood pressure. The inhibitor of the membrane attack complex, CD46, showed a significant positive association with cerebral grey matter volume. Plasma inflammatory markers, IL6 and ICAM1, were positively associated with EDE levels of several complement components. These findings provide the first in vivo evidence of the association of endothelial cell inflammation with white matter disease, age-associated cognitive changes, and brain degeneration in functionally normal older individuals. Future endothelial biomarker development may permit recognition of early or preclinical stages of vascular contributions to cognitive impairment and dementia.


Subject(s)
Aging , Cerebrovascular Disorders/physiopathology , Cognitive Dysfunction/pathology , Complement System Proteins/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Inflammation/pathology , Aged , Aged, 80 and over , Biomarkers/metabolism , California/epidemiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/metabolism , Female , Follow-Up Studies , Humans , Inflammation/epidemiology , Inflammation/immunology , Inflammation/metabolism , Longitudinal Studies , Male , Neuroimaging , Prognosis , Retrospective Studies , White Matter/immunology , White Matter/metabolism , White Matter/pathology
19.
J Gerontol A Biol Sci Med Sci ; 76(11): 1954-1961, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34110415

ABSTRACT

Blood-based inflammatory markers hold considerable promise for diagnosis and prognostication of age-related neurodegenerative disease, though a paucity of research has empirically tested how reliably they can be measured across different experimental runs ("batches"). We quantified the interbatch reliability of 13 cytokines and chemokines in a cross-sectional study of 92 community-dwelling older adults (mean age = 74; 48% female). Plasma aliquots from the same blood draw were parallelly processed in 2 separate batches using the same analytic platform and procedures (high-performance electrochemiluminescence by Meso Scale Discovery). Interbatch correlations (Pearson's r) ranged from small and nonsignificant (r = .13 for macrophage inflammatory protein-1 alpha [MIP-1α]) to very large (r > .90 for interferon gamma [IFNγ], interleukin-10 [IL-10], interferon gamma-induced protein 10 [IP-10], MIP-1ß, thymus and activation-regulated chemokine [TARC]) with most markers falling somewhere in between (.67 ≤ r ≤ .90 for IL-6, tumor necrosis factor alpha [TNF-α], Eotaxin, Eotaxin-3, monocyte chemoattractant protein-1 [MCP-1], MCP-4, macrophage-derived chemokine [MDC]). All markers, except for IL-6 and MCP-4, showed significant differences in absolute values between batches, with discrepancies ranging in effect size (Cohen's d) from small to moderate (0.2 ≤ |d| ≤ 0.5 for IL-10, IP-10, MDC) to large or very large (0.68 ≤ |d| ≤ 1.5 for IFNγ, TNF-α, Eotaxin, Eotaxin-3, MCP-1, MIP-1α, MIP-1ß, TARC). Relatively consistent associations with external variables of interest (age, sex, systolic blood pressure, body mass index, cognition) were observed across batches. Taken together, our results suggest heterogeneity in measurement reliability of blood-based cytokines and chemokines, with some analytes outperforming others. Future work is needed to evaluate the generalizability of these findings while identifying potential sources of batch effect measurement error.


Subject(s)
Cytokines , Neurodegenerative Diseases , Aged , Chemokine CCL26 , Chemokine CCL3 , Chemokine CCL4 , Chemokine CXCL10 , Cross-Sectional Studies , Female , Humans , Independent Living , Interferon-gamma , Interleukin-10 , Interleukin-6 , Male , Reproducibility of Results , Tumor Necrosis Factor-alpha
20.
Alzheimers Dement (Amst) ; 13(1): e12181, 2021.
Article in English | MEDLINE | ID: mdl-34013017

ABSTRACT

INTRODUCTION: Apolipoprotein E (APOE) ε4, the strongest non-Mendelian genetic risk factor for Alzheimer's disease (AD), has been shown to affect brain capillaries in mice, with potential implications for AD-related neurodegenerative disease. However, human brain capillaries cannot be directly visualized in vivo. We therefore used retinal imaging to test APOE ε4 effects on human central nervous system capillaries. METHODS: We collected retinal optical coherence tomography angiography, cognitive testing, and brain imaging in research participants and built statistical models to test genotype-phenotype associations. RESULTS: Our analyses demonstrate lower retinal capillary densities in early disease, in cognitively normal APOE ε4 gene carriers. Furthermore, through regression modeling with a measure of brain perfusion (arterial spin labeling), we provide support for the relevance of these findings to cerebral vasculature. DISCUSSION: These results suggest that APOE ε4 affects capillary health in humans and that retinal capillary measures could serve as surrogates for brain capillaries, providing an opportunity to study microangiopathic contributions to neurodegenerative disorders directly in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...