Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Biotechnol ; 373: 63-72, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37451319

ABSTRACT

In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of ß-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.


Subject(s)
Actinomycetales , Fermentation , Fructans/chemistry , Sucrose , Molecular Weight
2.
Cancer Genet ; 274-275: 59-71, 2023 06.
Article in English | MEDLINE | ID: mdl-37030018

ABSTRACT

Exosomal cargo secreted from cancer cells has been associated with the development and progression of the tumour. Enriching clinically relevant tissue-specific exosomes may assist in the focused analysis of RNA molecules packaged during cancer. Therefore, this study utilized a rapid immunomagnetic enrichment approach for targeted isolation of lung cancer cell-derived exosomes from human plasma, followed by analysing their cargo RNA using high throughput sequencing. The total RNA purified from these immunomagnetically enriched exosomes provided adequate RNA quality for characterization through the Illumina platform. Differential expression analysis was performed between patients and healthy controls to study the altered exosomal RNA profile during lung cancer. Further, functional enrichment analysis was performed with the list of identified differentially expressed genes (DEGs). In total, 1383 mRNAs and 64 lncRNA were identified as differentially expressed between patient plasma exosomes than healthy controls (fold change > 2, P < 0.05). Kyoto encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were mainly associated with cancer-related pathways, purine metabolism, calcium, and cGMP-PKG signalling pathways. In conclusion, the presented approach successfully demonstrated a novel strategy for focused disease-specific transcriptome analysis, which provides a feasible option for identifying disease-specific exosome biomarkers for detecting non-small lung cancer.


Subject(s)
Exosomes , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Exosomes/genetics , MicroRNAs/genetics , Gene Expression Profiling , Transcriptome , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Anal Biochem ; 667: 115082, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36796504

ABSTRACT

Parkinson's disease and Schizophrenia fall under low dopamine neurodegenerative and high dopamine psychiatric disorders respectively. Pharmacological interventions to correct mid-brain dopamine concentrations sometimes overshoots the physiological dopamine levels leading to psychosis in Parkinson's disease patients and, extra-pyramidal symptoms in schizophrenia patients. Currently no validated method is available to monitor side effects in such patients, Apolipoprotein E is one of the CSF biomarkers identified in the recent past that shows an inverse relation to mid-brain dopamine concentration. In this study, we have developed s-MARSA for the detection of Apolipoprotein E from ultra-small volume (2 µL) of CSF. s-MARSA exhibits a broad detection range (5 fg mL-1 to 4 µg mL-1) with a better detection limit and could be performed within an hour utilizing only a small volume of CSF sample. The values measured by s-MARSA strongly correlates with the values measured by ELISA. Our method has advantages over ELISA in having a lower detection limit, a broader linear detection range, shorter analysis time, and requiring a low volume of CSF samples. The developed s-MARSA method holds promise for the detection of Apolipoprotein E with clinical utility for monitoring pharmacotherapy of Parkinson's and Schizophrenia patients.


Subject(s)
Magnetite Nanoparticles , Parkinson Disease , Schizophrenia , Humans , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Schizophrenia/drug therapy , Dopamine , Apolipoproteins/therapeutic use
4.
BMC Microbiol ; 22(1): 233, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183083

ABSTRACT

Compared to the clinical sector, the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the food sector is relatively low. However, their presence in seafood is a significant public health concern. In India, fish and fishery products are maximally manually handled compared to other food products. In this study, 498 fish samples were collected under various conditions (fresh, chilled or dressed) and representatives from their surroundings. These samples were screened for the prevalence of Staphylococcus aureus, determining its antimicrobial resistance, MRSA and genetic profile. It is observed that 15.0% and 3.0% of the total samples were screened positive for S. aureus and MRSA, respectively. The S. aureus strain MRSARF-10 showed higher resistance to linezolid, co-trimoxazole, cefoxitin, ofloxacin, gentamicin, rifampicin, ampicillin/sulbactam and Piperacillin-tazobactam. This MRSA, spa type t021 and SCCmec type V strain isolated from dried ribbon fish (Family Trachipteridae) carried virulence factors for exoenzymes such as aureolysin, serine, toxin genes and a novel MLST ST 243, as revealed from its draft-genome sequence. This highly pathogenic, multidrug-resistant and virulent S. aureus novel strain is circulating in the environment with chances of spreading among the seafood workers and the environment. It is further suggested that Good Hygienic Practices recommended by World Health Organization need to be followed during the different stages of seafood processing to provide pathogen-free fish and fishery products to the consumers.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Ampicillin , Animals , Anti-Bacterial Agents/pharmacology , Cefoxitin , Gentamicins , Linezolid , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Ofloxacin , Piperacillin , Prevalence , Rifampin , Seafood , Serine , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Sulbactam , Tazobactam , Trimethoprim, Sulfamethoxazole Drug Combination , Virulence Factors/genetics
5.
Methods Appl Fluoresc ; 10(4)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36063812

ABSTRACT

Fluorescence microscopy has widespread applications across biological sciences. It has been routinely used for cell counting, which provides a preliminary diagnostic test for many infectious diseases. Conventional fluorescence microscopes are bulky, expensive, time-intensive and laborious. They often require trained operators to acquire and analyze data. We report a compact automated digital fluorescence microscopy system,i-scope, for cell counting applications. Thei-scopeemploys a total internal reflection fluorescence (TIRF) mode of sample illumination, along with a brightfield mode. It has a magnification of 30X, an optical resolution of ∼0.2µm/pixel and offers sample scanning over 20 mm × 20 mm. A custom-written program enables automated image acquisition and analysis, thereby enhancing ease of operation. It has a compact form-factor and has been developed into a standalone system with a processing unit, screen, and other accessories to offer a portable and economic point-of-care diagnostic solution in low-resource settings. We analysed the performance of the i-scopefor milk somatic cell enumeration and benchmarked it against that of a conventional fluorescence microscope.


Subject(s)
Microscopy, Fluorescence , Microscopy, Fluorescence/methods
6.
J Immunol Methods ; 508: 113324, 2022 09.
Article in English | MEDLINE | ID: mdl-35878721

ABSTRACT

Exosomes derived from biological fluids have the potential to serve as a biomarker for the early detection of various cancers. However, the lack of reliable enrichment and detection methods posed a challenge for its clinical utility. In this work, we designed a rapid co-capture-based approach for targeted enrichment and detection of lung cancer-derived exosomes from human plasma. This method relies on the formation of a sandwich complex around the exosomes that involves magnetic nanoparticles coupled to CD151 to assist in the immunomagnetic selection of lung-derived exosomes and a secondary detection antibody (CD81) coupled to horseradish peroxidase for signal amplification. The performance of the co-capture method to detect exosomes has been optimized with known exosome concentrations in human plasma and exhibited good linearity (108-105 exosomes mL-1) with a detection limit of 60.4 exosomes µL-1. This study further investigated the potential of the developed assay to differentiate healthy and lung cancer patients using 18 clinical samples by quantifying the CD151+/ CD81+ lung-derived exosomes. In conclusion, this study demonstrated a rapid co-capture-based approach that offers simultaneous isolation and detection of exosomes compatible with low sample volume for detecting lung cancer patients.


Subject(s)
Biosensing Techniques , Exosomes , Lung Neoplasms , Nanoparticles , Biosensing Techniques/methods , Horseradish Peroxidase , Humans , Lung Neoplasms/diagnosis
7.
Environ Microbiol Rep ; 14(3): 391-399, 2022 06.
Article in English | MEDLINE | ID: mdl-34344057

ABSTRACT

The population of methicillin-resistant (MR) staphylococci in aquatic environment is rarely investigated. Here, we characterized a collection of MR staphylococci recovered from shrimp aquaculture farms (n = 37) in Kerala, India. A total of 261 samples yielded 47 MR isolates (16 S. aureus, 13 S. haemolyticus, 11 S. epidermidis, 3 S. saprophytics and 2 each of S.intermedius and S. kloosii). Multi-drug resistance was evident in 72.3% of the isolates, with resistance mainly towards erythromycin (78.7%), norfloxacin and trimethoprim-sulfamethoxazole (53.2%), and gentamicin (34%). Major resistance genes identified included mecA (100%), ermC (38.3%), aacA-aphD (21.3%), tetK (14.9%) and tetM (21.3%). Almost 60% of the isolates carried type V SCCmec (Staphylococcal Cassette Chromosome mec), and the remaining harboured untypeable SCCmec elements. Comprehensive genotyping of the methicillin-resistant Staphylococcus aureus isolates revealed high prevalence of ST772-t345-V (sequence type-spa type-SCCmec type) (75%), followed by minor representations of ST6657-t345-V and ST3190-t12353. The isolates of S. haemolyticus and S. epidermidis were genotypically diverse as shown by their pulsed-field gel electrophoresis (PFGE) profiles. Genes encoding staphylococcal enterotoxins were observed in 53.2% of the isolates. Various genes involved in adhesion and biofilm formation were also identified. In conclusion, our findings provide evidence that shrimp aquaculture settings can act as reservoirs of methicillin-resistant staphylococci.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Aquaculture , Genotype , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Phenotype , Staphylococcus/genetics , Staphylococcus aureus
8.
JAC Antimicrob Resist ; 3(4): dlab164, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917941

ABSTRACT

OBJECTIVES: We investigated the prevalence and diversity of antimicrobial resistance in bacteria isolated from urine samples of community-onset urinary tract infection (UTI) patients in southern Assam, India. METHODS: Freshly voided midstream urine samples were collected from patients attending primary healthcare centres, with the patients' epidemiological data also recorded. Species identification was confirmed using a VITEK 2 compact automated system. Phenotypic confirmation of ESBLs was performed using the combined disc diffusion method (CLSI 2017) and carbapenemase production was phenotypically characterized using a modified Hodge test. Common ESBLs and carbapenem-resistance mechanisms were determined in Escherichia coli isolates using PCR assays. Incompatibility typing of the conjugable plasmids was determined by PCR-based replicon typing; the phylotypes and MLSTs were also analysed. RESULTS: A total of 301 (59.7%) samples showed significant bacteriuria along with symptoms of UTI and among them 103 isolates were identified as E. coli of multiple STs (ST3268, ST3430, ST4671 and others). Among them, 26.2% (27/103) were phenotypically ESBL producers whereas 12.6% (13/103) were carbapenemase producers. This study describes the occurrence of diverse ESBL genes-bla CTX-M-15, bla SHV-148, bla PER-1 and bla TEM-and two E. coli isolates carrying the bla NDM-1 carbapenemase gene. ESBL genes were located within transconjugable plasmids of IncP and IncF type whereas bla NDM-1 was carried in an IncFrepB type plasmid. CONCLUSIONS: This study illustrates the high rate of MDR in E. coli causing UTI in primary care in rural Assam. UTIs caused by ESBL- or MBL-producing bacteria are very difficult to treat and can often lead to treatment failure. Thus, future research should focus on rapid diagnostics to enable targeted treatment options and reduce the treatment failure likely to occur with commonly prescribed antibiotics, which will help to combat antimicrobial resistance and the burden of UTIs.

9.
Front Microbiol ; 12: 622891, 2021.
Article in English | MEDLINE | ID: mdl-34489875

ABSTRACT

This study was undertaken to evaluate the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in selected shrimp aquaculture farms (n = 37) in Kerala, South India and to characterize the isolates using molecular tools. Overall, a low prevalence of ESBL-producers was found in the farms, most likely due to the reduced antibiotic usage in the shrimp farming sector. Out of the 261 samples (77 shrimp and 92 each of water and sediment), 14 (5.4%) tested positive for ESBL-E. coli or ESBL-K. pneumoniae. A total of 32 ESBL-E. coli and 15 ESBL- K. pneumoniae were recovered from these samples. All ESBL isolates were cefotaxime-resistant with minimal inhibitory concentration (MIC) ≥32 µg/ml. Of all isolates, 9 (28.1%) E. coli and 13 (86.7%) K. pneumoniae showed simultaneous resistance to tetracycline, ciprofloxacin, and trimethoprim-sulfamethoxazole. PCR analysis identified CTX-M group 1 (bla CTX-M-15 ) as the predominant ESBL genotype in both E. coli (23, 71.9%) and K. pneumoniae (15, 100%). Other beta-lactamase genes detected were as follows: bla TEM and bla SHV (11 K. pneumoniae), bla CTX-M group 9 (9 E. coli), and bla CMY-2 (2 E. coli). Further screening for AMR genes identified tetA and tetB (13, 40.6%), sul1 (11, 34.4%), sul2 (9, 28.1%), catA and cmlA (11, 34.4%), qepA and aac(6')-Ib-cr (9, 28.1%) and strAB and aadA1 (2, 6.3%) in E. coli, and qnrB (13, 86.7%), qnrS (3, 20%), oqxB (13, 86.7%), tetA (13, 86.7%), and sul2 (13, 86.7%) in K. pneumoniae isolates. Phylogenetic groups identified among E. coli isolates included B1 (4, 12.5%), B2 (6, 18.8%), C (10, 31.3%), D (3, 9.4%), and E (9, 28.1%). PCR-based replicon typing (PBRT) showed the predominance of IncFIA and IncFIB plasmids in E. coli; however, in K. pneumoniae, the major replicon type detected was IncHI1. Invariably, all isolates of K. pneumoniae harbored virulence-associated genes viz., iutA, entB, and mrkD. Epidemiological typing by pulsed-field gel electrophoresis (PFGE) revealed that E. coli isolates recovered from different farms were genetically unrelated, whereas isolates of K. pneumoniae showed considerable genetic relatedness. In conclusion, our findings provide evidence that shrimp aquaculture environments can act as reservoirs of multi-drug resistant E. coli and K. pneumoniae.

10.
PeerJ ; 9: e11224, 2021.
Article in English | MEDLINE | ID: mdl-34113482

ABSTRACT

Methicillin-resistant staphylococcus aureus (MRSA) sequence type 28 (ST 28) and spa type t021 is a CC30, prototype of ST-30, Community Associated-MRSA (CA-MRSA) (lukS-lukF +). It is a multi-drug resistant strain harbouring staphylococcal endotoxins, haemolysins, ureolysin, serine protease, and antimicrobial resistance genes. In this study, we report the draft genome sequence of this MRSA isolated from the most commonly used food fish, ribbon fish (Trichiurus lepturus). The total number of assembled paired-end high-quality reads was 7,731,542 with a total length of  2.8Mb of 2797 predicted genes. The unique ST28/ t021 CA- MRSA in fish is the first report from India, and in addition to antibiotic resistance is known to co-harbour virulence genes, haemolysins, aureolysins and endotoxins. Comprehensive comparative genomic analysis of CA-MRSA strain7 can help further understand their diversity, genetic structure, diversity and a high degree of virulence to aid in fisheries management.

11.
Sensors (Basel) ; 21(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800145

ABSTRACT

Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.


Subject(s)
Biosensing Techniques , Vancomycin , Bacteria , Dielectric Spectroscopy , Electrochemical Techniques , Electrodes , Gold , Polymers , Staphylococcus
12.
Article in English | MEDLINE | ID: mdl-31740560

ABSTRACT

The discovery of antibiotics in the last century is considered one of the most important achievements in the history of medicine. Antibiotic usage has significantly reduced morbidity and mortality associated with bacterial infections. However, inappropriate use of antibiotics has led to emergence of antibiotic resistance at an alarming rate. Antibiotic resistance is regarded as a major health care challenge of this century. Despite extensive research, well-documented biochemical mechanisms and genetic changes fail to fully explain mechanisms underlying antibiotic resistance. Several recent reports suggest a key role for epigenetics in the development of antibiotic resistance in bacteria. The intrinsic heterogeneity as well as transient nature of epigenetic inheritance provides a plausible backdrop for high-paced emergence of drug resistance in bacteria. The methylation of adenines and cytosines can influence mutation rates in bacterial genomes, thus modulating antibiotic susceptibility. In this review, we discuss a plethora of recently discovered epigenetic mechanisms and their emerging roles in antibiotic resistance. We also highlight specific epigenetic mechanisms that merit further investigation for their role in antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Drug Resistance, Microbial/genetics , Epigenesis, Genetic , Bacteria/genetics , Bacterial Infections/microbiology , Humans
13.
Sci Rep ; 9(1): 16371, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719539

ABSTRACT

Microscopy-based tuberculosis (TB) diagnosis i.e. Ziehl-Neelsen screening still remains the primary diagnostic method in resource poor and high TB burden countries, however this method has poor sensitivity (~60%). Bringing three million TB patients who are left undiagnosed under the treatment has been a major focus as part of END-TB strategy across the world. We have developed a portable set-up called 'SeeTB' that converts a bright-field microscope into fluorescence microscope (FM) with minimal interventions. SeeTB, a total internal reflection-based fluorescence excitation system allows visualization of auramine-O stained bacilli efficiently with high signal-to-noise ratio. Along with the device, we have developed a sputum-processing reagent called 'CLR' that homogenizes and digests the viscous polymer matrix of sputum. We have compared the performance of SeeTB system in 237 clinical sputum samples along with FM, GeneXpert and liquid culture. In comparison with culture as gold standard, FM has sensitivity of 63.77% and SeeTB has improved sensitivity to 76.06%. In comparison with GeneXpert, FM has sensitivity of 73.91% while SeeTB has improved sensitivity to 85.51%. However, there is no significant change in the specificity between FM and SeeTB system. In short, SeeTB system offers the most realistic option for improved TB case identification in resource-limited settings.


Subject(s)
Benzophenoneidum/chemistry , Microscopy, Fluorescence/instrumentation , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Diagnostic Equipment , Diagnostic Tests, Routine , Early Diagnosis , Equipment Design , Humans , Male , Sensitivity and Specificity , Sputum/microbiology
14.
Biomed Microdevices ; 21(4): 95, 2019 11 09.
Article in English | MEDLINE | ID: mdl-31707575

ABSTRACT

Enteric fever is one of the leading causes of infection and subsequent fatality (greater than 1.8 million) (WHO 2018), especially in the developing countries due to contaminated water and food inter twinned with unhygienic practices. Clinical gold standard technique of culture-based method followed by biochemical tests demand 72+ hours for diagnosis while newly developed techniques (like PCR, RT-PCR, DNA microarray etc.) suffer from high limit of detection or involve high-cost infrastructure or both. In this work, a quick and highly specific method, SMOL was established for simultaneous detection of Salmonella paratyphi A and Salmonella typhi in clinical blood samples. SMOL consists of (i) pre-concentration of S. typhi and S. paratyphi A cells using magnetic nanoparticles followed by (ii) cell lysis and DNA extraction (iii) amplification of select nucleic acids by LAMP technique and (iv) detection of amplified nucleic acids using an affordable portable device (costs less than $70). To identify the viability of target cells at lower concentrations, the samples were processed at two different time periods of t = 0 and t = 4 h. Primers specific for the SPA2539 gene in S. paratyphi A and STY2879 gene in S. typhi were used for LAMP. Within 6 h SMOL was able to detect positive and negative samples from 55 human clinical blood culture samples and detect the viability of the cells. The results were concordant with culture and biochemical tests as well as by qPCR. Statistical power analysis yielded 100%. SMOL results were concordant with culture and biochemical tests as well as by qPCR. The sensitive and affordable system SMOL will be effective for poor resource settings.


Subject(s)
Blood/microbiology , Costs and Cost Analysis , Limit of Detection , Salmonella paratyphi A/isolation & purification , Salmonella typhi/isolation & purification , Serologic Tests/economics , Serologic Tests/instrumentation , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Humans , Nucleic Acid Amplification Techniques , Salmonella paratyphi A/genetics , Salmonella typhi/genetics , Time Factors , Typhoid Fever/microbiology
16.
Indian J Microbiol ; 58(3): 381-392, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30013283

ABSTRACT

A limit of detection of 200 CFU/mL of Salmonella typhi spiked in various sample matrices were achieved in 30 min. The sample matrices were raw/unprocessed milk, commercially available milk, juice from packed bottles, fresh juice from carts, potable water, turbid water and calf serum. The complete protocol comprised of three steps: (a) cell lysis (b) nucleic acid amplification and (c) an in situ optical detection. The cell lysis was carried out using a simple heating based protocol, while the loop-mediated isothermal amplification of DNA was carried out by an in-house designed and fabricated system. The developed system consists of an aluminum block fitted with two cartridge heaters along with a thermocouple. The system was coupled to a light source and spectrometer for a simultaneous in situ detection. Primers specific for STY2879 gene were used to amplify the nucleic acid sequence, isolated from S. typhi cells. The protocol involves 15 min of cell lysis and DNA isolation followed by 15 min for isothermal amplification and simultaneous detection. No cross-reactivity of the primers were observed at 106 CFU/mL of Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Salmonella paratyphi A, Pseudomonas aeruginosa, Bacillus cereus, Lysteria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Salmonella havana. In addition, the system was able to detect S. typhi of 200 CFU/mL in a concoction of 106 CFU/mL of E. coli, 106 CFU/mL of V. cholerae, and 106 CFU/mL of hepatocyte-derived cellular carcinoma HUH7 cells. The proposed rapid diagnostic system shows a promising future in the field of food and medical diagnostics.

17.
PLoS One ; 13(3): e0194817, 2018.
Article in English | MEDLINE | ID: mdl-29590194

ABSTRACT

Enteric fever continues to be a major cause of mortality and morbidity globally, particularly in poor resource settings. Lack of rapid diagnostic assays is a major driving factor for the empirical treatment of enteric fever. In this work, a rapid and sensitive method 'Miod' 'has been developed. Miod includes a magnetic nanoparticle-based enrichment of target bacterial cells, followed by cell lysis and loop-mediated isothermal amplification (LAMP) of nucleic acids for signal augmentation along with concurrent measurement of signal via an in-situ optical detection system. To identify positive/negative enteric fever infections in clinical blood samples, the samples were processed using Miod at time = 0 hours and time = 4 hours post-incubation in blood culture media. Primers specific for the STY2879 gene were used to amplify the nucleic acids isolated from S. typhi cells. A limit of detection of 5 CFU/mL was achieved. No cross-reactivity of the primers were observed against 106 CFU/mL of common pathogenic bacterial species found in blood such as E. coli, P. aeruginosa, S. aureus, A. baumanni, E. faecalis, S. Paratyphi A and K. pneumonia. Miod was tested on 28 human clinical blood samples. The detection of both pre-and post-four-hours incubation confirmed the presence of viable S. typhi cells and allowed clinical correlation of infection. The positive and negative samples were successfully detected in less than 6 hours with 100% sensitivity and specificity.


Subject(s)
Magnetite Nanoparticles/chemistry , Nucleic Acid Amplification Techniques/methods , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Typhoid Fever/diagnosis , Humans , Polymerase Chain Reaction , Typhoid Fever/blood , Typhoid Fever/genetics
18.
Methods Appl Fluoresc ; 6(1): 015007, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29076809

ABSTRACT

Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

19.
Sci Rep ; 6: 32043, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27554800

ABSTRACT

In this work, we analysed processive sliding and breakage of actin filaments at various heavy meromyosin (HMM) densities and ATP concentrations in IVMA. We observed that with addition of ATP solution, the actin filaments fragmented stochastically; we then determined mean length and velocity of surviving actin filaments post breakage. Average filament length decreased with increase in HMM density at constant ATP, and increased with increase in ATP concentration at constant HMM density. Using density of HMM molecules and length of actin, we estimated the number of HMM molecules per actin filament (N) that participate in processive sliding of actin. N is solely a function of ATP concentration: 88 ± 24 and 54 ± 22 HMM molecules (mean ± S.D.) at 2 mM and 0.1 mM ATP respectively. Processive sliding of actin filament was observed only when N lay within a minimum lower limit (Nmin) and a maximum upper limit (Nmax) to the number of HMM molecules. When N < Nmin the actin filament diffused away from the surface and processivity was lost and when N > Nmax the filament underwent breakage eventually and could not sustain processive sliding. We postulate this maximum upper limit arises due to increased number of strongly bound myosin heads.


Subject(s)
Actins/metabolism , Myosin Subfragments/metabolism , Myosin Type II/metabolism , Actin Cytoskeleton/metabolism , Adenosine Triphosphate/metabolism , Animals , Chickens , Muscle, Skeletal/cytology , Myosin Subfragments/chemistry , Myosin Subfragments/isolation & purification
20.
Analyst ; 141(11): 3358-66, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27118505

ABSTRACT

Bacterial infections continue to be a major cause of deaths globally, particularly in resource-poor settings. In the absence of rapid and affordable diagnostic solutions, patients are mostly administered broad spectrum antibiotics leading to antibiotics resistance and poor recovery. Culture diagnosis continues to be a gold standard for diagnosis of bacterial infection, despite its long turnaround time of 24 to 48 h. We have developed a portable immunomagnetic cell capture (iMC(2)) system that allows rapid culture diagnosis of bacterial pathogens. Our approach involves the culture growth of the blood samples in broth media for 6 to 8 h, followed by immunomagnetic enrichment of the target cells using the iMC(2) device. The device comprises a disposable capture chip that has two chambers of 5 ml and 50 µl volume connected through a channel with a manual valve. Bacterial cells bound to antibody coated magnetic nanoparticles are swept from the 5 ml sample chamber into the 50 µl recovery chamber by moving an external magnetic field with respect to the capture chip using a linear positioner. This enables specific isolation and up to 100× enrichment of the target cells. The presence of bacteria in the recovered sample is confirmed visually using a lateral flow immunoassay. The system is demonstrated in buffer and blood samples spiked with S. typhi. The method has high sensitivity (10 CFU ml(-1)), specificity and a rapid turnaround time of less than 7 h, a significant improvement over conventional methods.


Subject(s)
Bacterial Infections/diagnosis , Blood/microbiology , Immunoassay , Immunomagnetic Separation , Culture Media , Humans , Magnetite Nanoparticles , Salmonella typhi , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...