Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 5(3): 481-499, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233483

ABSTRACT

Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis. Finally, we show that GNAQ/11-mutant UM cells and patients' tumors exhibit elevated levels of IP4, a biomarker of enhanced IP3 production; these high levels are abolished by GNAQ/11 inhibition and correlate with sensitivity to INPP5A depletion. Our findings uncover INPP5A as a synthetic lethal vulnerability and a potential therapeutic target for GNAQ/11-mutant-driven cancers.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/therapeutic use , Mutation , Signal Transduction , Inositol Polyphosphate 5-Phosphatases/genetics
2.
Science ; 372(6545): 984-989, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34045355

ABSTRACT

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/physiology , Biological Evolution , Chromosomes/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Eukaryota/genetics , Genome , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Adenosine Triphosphatases/chemistry , Algorithms , Animals , Cell Nucleolus/ultrastructure , Cell Nucleus/ultrastructure , Centromere/ultrastructure , Chromosomes/chemistry , Chromosomes, Human/chemistry , Chromosomes, Human/ultrastructure , DNA-Binding Proteins/chemistry , Genome, Human , Genomics , Heterochromatin/ultrastructure , Humans , Interphase , Mitosis , Models, Biological , Multiprotein Complexes/chemistry , Telomere/ultrastructure
3.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31629658

ABSTRACT

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly/physiology , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/physiology , Adenosine Triphosphate/chemistry , Binding Sites/genetics , Binding Sites/physiology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Chromosomes/physiology , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Humans , Multiprotein Complexes/physiology , Protein Binding/physiology , Protein Subunits/metabolism , Cohesins
4.
Mol Cell ; 61(4): 575-588, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26895426

ABSTRACT

Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Acetylation , Catalytic Domain , Cell Cycle , Chromatin/genetics , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cohesins
5.
Dev Cell ; 31(1): 7-18, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25313959

ABSTRACT

The X shape of chromosomes is one of the iconic images in biology. Cohesin actually connects the sister chromatids along their entire length, from S phase until mitosis. Then, cohesin's antagonist Wapl allows the separation of chromosome arms by opening a DNA exit gate in cohesin rings. Centromeres are protected against this removal activity, resulting in the X shape of mitotic chromosomes. The destruction of the remaining centromeric cohesin by Separase triggers chromosome segregation. We review the two-phase regulation of cohesin removal and discuss how this affects chromosome alignment and decatenation in mitosis and cohesin reloading in the next cell cycle.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Structures/genetics , Mitosis , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Structures/metabolism , Humans , Cohesins
6.
Curr Biol ; 24(12): R571-R573, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24937285

ABSTRACT

Chromosomal instability is a driving force for heterogeneity within tumours. A recent study shows that boosting sister chromatid cohesion corrects chromosomal instability in pRB-deficient cancer cells. This key finding provides an important lead to make tumours more susceptible to anti-cancer drugs.


Subject(s)
Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chromosomal Instability , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Neoplastic , Histones/genetics , Retinoblastoma Protein/genetics , Humans
7.
PLoS One ; 8(10): e77053, 2013.
Article in English | MEDLINE | ID: mdl-24204733

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Neural Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Benzimidazoles/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blotting, Western , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor/methods , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Indans/pharmacology , Mice , Mice, Knockout , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Neural Stem Cells/enzymology , Neural Stem Cells/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pteridines/pharmacology , Pyrazoles/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Swine , Thiophenes/pharmacology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Polo-Like Kinase 1
8.
Curr Biol ; 23(20): 2071-7, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24055153

ABSTRACT

The classical X shape of mitotic human chromosomes is the consequence of two distinct waves of cohesin removal. First, during prophase and prometaphase, the bulk of cohesin is driven from chromosome arms by the cohesin antagonist WAPL. This arm-specific cohesin removal is referred to as the prophase pathway [1-4]. The subsequent cleavage of the remaining centromeric cohesin by Separase is known to be the trigger for anaphase onset [5-7]. Remarkably the biological purpose of the prophase pathway is unknown. We find that this pathway is essential for two key mitotic processes. First, it is important to focus Aurora B at centromeres to allow efficient correction of erroneous microtubule-kinetochore attachments. In addition, it is required to facilitate the timely decatenation of sister chromatids. As a consequence, WAPL-depleted cells undergo anaphase with segregation errors, including both lagging chromosomes and catenanes, resulting in micronuclei and DNA damage. Stable WAPL depletion arrests cells in a p53-dependent manner but causes p53-deficient cells to become highly aneuploid. Our data show that the WAPL-dependent prophase pathway is essential for proper chromosome segregation and is crucial to maintain genomic integrity.


Subject(s)
Aneuploidy , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , Nuclear Proteins/genetics , Prophase , Proto-Oncogene Proteins/genetics , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Centromere/metabolism , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Human/metabolism , Humans , Microscopy, Phase-Contrast , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Retinal Pigment Epithelium , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL