Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17316, 2024.
Article in English | MEDLINE | ID: mdl-38699185

ABSTRACT

This review discusses the importance of homeostasis with a particular emphasis on the acid-base (AB) balance, a crucial aspect of pH regulation in living systems. Two primary organ systems correct deviations from the standard pH balance: the respiratory system via gas exchange and the kidneys via proton/bicarbonate secretion and reabsorption. Focusing on kidney functions, we describe the complexity of renal architecture and its challenges for experimental research. We address specific roles of different nephron segments (the proximal convoluted tubule, the loop of Henle and the distal convoluted tubule) in pH homeostasis, while explaining the physiological significance of ion exchange processes maintained by the kidneys, particularly the role of bicarbonate ions (HCO3-) as an essential buffer system of the body. The review will be of interest to researchers in the fields of physiology, biochemistry and molecular biology, which builds a strong foundation and critically evaluates existing studies. Our review helps identify the gaps of knowledge by thoroughly understanding the existing literature related to kidney acid-base homeostasis.


Subject(s)
Acid-Base Equilibrium , Homeostasis , Kidney , Humans , Acid-Base Equilibrium/physiology , Kidney/metabolism , Kidney/physiology , Homeostasis/physiology , Hydrogen-Ion Concentration , Animals , Bicarbonates/metabolism
2.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672482

ABSTRACT

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Subject(s)
Brain Neoplasms , Hyaluronan Receptors , Hyaluronic Acid , SOXB1 Transcription Factors , Spheroids, Cellular , Hyaluronic Acid/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Rats , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Cells, Cultured , Cell Fusion
3.
Immunol Cell Biol ; 102(5): 381-395, 2024.
Article in English | MEDLINE | ID: mdl-38629182

ABSTRACT

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.


Subject(s)
Cell Differentiation , Cellular Microenvironment , Kupffer Cells , Macrophages , Phenotype , Kupffer Cells/metabolism , Kupffer Cells/cytology , Macrophages/metabolism , Animals , Monocytes/metabolism , Monocytes/cytology , Hepatocyte Growth Factor/metabolism , Endothelial Cells/metabolism , Coculture Techniques , Humans , Cell Proliferation , Cells, Cultured , Liver/cytology , Liver/metabolism , Mice
4.
Biomedicines ; 12(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540309

ABSTRACT

We studied the gene-expression patterns in specimens of tumor and peritumor tissue biopsies of 26 patients with head and neck carcinomas depending on smoking status. Histological and immunohistochemical examinations verified that all tumors belonged to the "classical" subgroup of head and neck carcinomas, and the HPV-negative tumor status was confirmed. The expression of 28 tumor-associated genes determined by RT-PCR was independent of patients' sex or age, TNM status, degree of differentiation, or tissue localization. Moreover, in peritumor tissue, none of the 28 genes were differentially expressed between the groups of smoking and nonsmoking patients. During oncotransformation in both studied groups, there were similar processes typical for HNSCC progression: the expression levels of paired keratins 4 and 13 were reduced, while the expression levels of keratin 17 and CD44 were significantly increased. However, further investigation revealed some distinctive features: the expression of the genes EGFR and TP63 increased significantly only in the nonsmoking group, and the expression of IL6, CDKN2A, EGF, and PITX1 genes changed only in the smoking group. In addition, correlation analysis identified several clusters within which genes displayed correlations in their expression levels. The largest group included 10 genes: TIMP1, TIMP2, WEE1, YAP, HIF1A, PI3KCA, UTP14A, APIP, PTEN, and SLC26A6. The genetic signatures associated with smoking habits that we have found may serve as a prerequisite for the development of diagnostic panels/tests predicting responses to different therapeutic strategies for HNSCC.

5.
J Dev Biol ; 12(1)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38390957

ABSTRACT

A characteristic feature of repair processes in mammals is the formation of scar tissue at the site of injury, which is designed to quickly prevent contact between the internal environment of the organism and the external environment. Despite this general pattern, different organs differ in the degree of severity of scar changes in response to injury. One of the areas in which regeneration after wounding leads to the formation of a structure close to the original one is the abdominal skin of laboratory rats. Finding out the reasons for such a phenomenon is essential for the development of ways to stimulate full regeneration. The model of skin wound healing in the abdominal region of laboratory animals was reproduced in this work. It was found that the wound surface is completely epithelialized on the abdomen by 20 days, while on the back-by 30 days. The qPCR method revealed higher expression of marker genes of skin stem cells (Sox9, Lgr6, Gli1, Lrig1) in the intact skin of the abdomen compared to the back, which corresponded to a greater number of hairs with which stem cells are associated on the abdomen compared to the back. Considering that some stem cell populations are associated with hair, it can be suggested that one of the factors in faster regeneration of abdominal skin in the rat is the greater number of stem cells in this area.

6.
Placenta ; 145: 151-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141416

ABSTRACT

INTRODUCTION: The role of the TGFß signaling pathway, an important cascade responsible for the anti-inflammatory polarization of macrophages, in the development of both early- and late-onset preeclampsia (eoPE and loPE), remains poorly understood. In this study, we examined the components of the TGFß signaling cascade and macrophage markers within placental tissue in normal pregnancy and in PE. METHODS: Patients with eoPE, loPE, and normal pregnancy were enrolled in the study (n = 10 in each group). Following techniques were used for the investigation: immunohistochemistry analysis, western blotting, qRT-PCR, isolation of monocytes by magnetic sorting, transfection, microRNA sequencing, and bioinformatic analysis. RESULTS: We observed a significant decrease in the anti-inflammatory macrophage marker CD206 in the loPE group, alongside with a significant down-regulation of CD206 protein production in both eoPE and loPE groups. The level of CD68-positive cells and relative levels of CD163 and MARCO production were comparable across the groups. However, we identified a significant decrease in the TGFß receptor 2 production and its gene expression in the PE group. Further analysis revealed a link between TGFBR2 and MRC1 (CD206) genes through a single miRNA, hsa-miR-27a-3p. Transfecting CD14-derived macrophages with the hsa-miR-27a-3p mimic significantly changed TGFBR2 production, indicating the potential role of this miRNA in regulating the TGFß signaling pathway. We also revealed the up-regulation of hsa-miR-27a-5p and hsa-miR-27a-3p in the trophoblast BeWo b30 cell line under the severe hypoxia condition and the fact that TGFBR2 3' UTR could serve as a potential target for these miRNAs. DISCUSSION: Our findings uncover a novel potential therapeutic target for managing patients with PE, significantly contributing to a deeper comprehension of the underlying mechanisms involved in the development of this pathology.


Subject(s)
Eosine Yellowish-(YS) , MicroRNAs , Phosphatidylethanolamines , Placenta , Female , Humans , Pregnancy , Anti-Inflammatory Agents , Eosine Yellowish-(YS)/analogs & derivatives , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Placenta/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Transforming Growth Factor beta/genetics
7.
Sci Rep ; 13(1): 20388, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989873

ABSTRACT

Stem cell-based therapeutic approaches for neurological disorders are widely studied. Paracrine factors secreted by stem cells in vitro and delivered intranasally might allow bypassing the disadvantages associated with a surgical cell delivery procedure with likely immune rejection of a transplant. In this study, we investigated the therapeutic effect of the extracellular vesicles secreted by glial progenitor cells (GPC-EV) derived from human induced pluripotent stem cell in a traumatic brain injury model. Intranasal administration of GPC-EV to Wistar rats for 6 days improved sensorimotor functions assessed over a 14-day observation period. Beside, deep sequencing of microRNA transcriptome of GPC-EV was estimate, and was revealed 203 microRNA species that might be implicated in prevention of various brain pathologies. Modulation of microRNA pools might contribute to the observed decrease in the number of astrocytes that inhibit neurorecovery processes while enhancing neuroplasticity by decreasing phosphorylated Tau forms, preventing inflammation and apoptosis associated with secondary damage to brain tissue. The course of GPC-EV administration was promoted the increasing protein levels of NF-κB in studied areas of the rat brain, indicating NF-κB dependent mechanisms as a plausible route of neuroprotection within the damaged area. This investigation showed that GPC-EV may be representing a therapeutic approach in traumatic brain injury, though its translation into the clinic would require an additional research and development.


Subject(s)
Brain Injuries, Traumatic , Extracellular Vesicles , Induced Pluripotent Stem Cells , MicroRNAs , Neuroprotective Agents , Humans , Rats , Animals , MicroRNAs/metabolism , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , Rats, Wistar , Induced Pluripotent Stem Cells/metabolism , Brain/metabolism , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/drug therapy , Extracellular Vesicles/metabolism , Neuroglia/metabolism
8.
Front Cell Dev Biol ; 11: 1241819, 2023.
Article in English | MEDLINE | ID: mdl-37745290

ABSTRACT

Introduction: The role of the immune system in liver repair is fundamentally complex and most likely involves the spleen. The close connection between the two organs via the portal vein enables delivery of splenic cytokines and living cells to the liver. This study evaluates expression of inflammation-related genes and assesses the dynamics of monocyte-macrophage and lymphocyte populations of the spleen during the recovery from 70% hepatectomy in mice. Methods: The study used the established mouse model of 70% liver volume resection. The animals were sacrificed 24 h, 72 h or 7 days post-intervention and splenic tissues were collected for analysis: Clariom™ S transcriptomic assay, immunohistochemistry for proliferation marker Ki-67 and macrophage markers, and flow cytometry for lymphocyte and macrophage markers. Results: The loss and regeneration of 70% liver volume affected the cytological architecture and gene expression profiles of the spleen. The tests revealed significant reduction in cell counts for Ki-67+ cells and CD115+ macrophages on day 1, Ly6C + cells on days 1, 3 and 7, and CD3+CD8+ cytotoxic lymphocytes on day 7. The transcriptomic analysis revealed significant activation of protease inhibitor genes Serpina3n, Stfa2 and Stfa2l1 and decreased expression of cell cycle regulatory genes on day 1, mirrored by inverse dynamics observed on day 7. Discussion and conclusion: Splenic homeostasis is significantly affected by massive loss in liver volume. High levels of protease inhibitors indicated by increased expression of corresponding genes on day 1 may play an anti-inflammatory role upon reaching the regenerating liver via the portal vein. Leukocyte populations of the spleen react by a slow-down in proliferation. A transient decrease in the local CD115+ and Ly6C+ cell counts may indicate migration of splenic monocytes-macrophages to the liver.

9.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37627599

ABSTRACT

The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.

10.
Int Immunopharmacol ; 122: 110583, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423155

ABSTRACT

Macrophages as innate immune cells with great plasticity are of great interest for cell therapy. There are two main macrophage populations - pro- and anti-inflammatory cells also known as M1 and M2. High potential in cancer research contributed to the in-depth study of the molecular processes leading to the polarization of macrophages into the M1 phenotype, and much less attention has been paid to anti-inflammatory M2 macrophages, which can be successfully used in cell therapy of inflammatory diseases. This review describes ontogenesis of macrophages, main functions of pro- and and-inflammatory cells and four M2 subpopulations characterized by different functionalities. Data on agents (cytokines, microRNAs, drugs, plant extracts) that may induce M2 polarization through the changes in microenvironment, metabolism, and efferocytosis are summarized. Finally, recent attempts at stable macrophage polarization using genetic modifications are described. This review may be helpful for researchers concerned with the problem of M2 macrophage polarization and potential use of these anti-inflammatory cells for the purposes of regenerative medicine.


Subject(s)
Macrophages , MicroRNAs , Cytokines/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , Anti-Inflammatory Agents/therapeutic use
11.
Biol Res ; 56(1): 15, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991509

ABSTRACT

BACKGROUND: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS: The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS: Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS: Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.


Subject(s)
Spleen , Splenectomy , Male , Mice , Animals , Spleen/physiology , Spleen/transplantation , Transplantation, Autologous , T-Lymphocytes , Disease Models, Animal
12.
J Clin Med ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36983400

ABSTRACT

BACKGROUND: Diagnostic and treatment delays have caused significant impacts on the physical and emotional well-being of adolescents with endometriosis, though such research is limited. This study aimed to assess the effects of one-year dienogest therapy on the clinical picture, pain patterns, psycho-emotional status, and quality-of-life indicators in adolescents with endometriosis after surgical treatment. METHODS: The study enrolled 32 girls aged 13-17 with peritoneal endometriosis to analyze one-year dynamics of the Visual Analog Scale (VAS), McGill Pain Questionnaire, Beck Depression Scale (BDI), Hospital Anxiety and Depression Scale (HADS), Spielberger State-Trait Anxiety Inventory (STAI) and SF-36 quality-of-life survey scores along with clinical and laboratory indicators before surgery and after one-year dienogest therapy. RESULTS: The therapy provided a significant alleviation of endometriosis-associated clinical symptoms, including dysmenorrhea, pelvic pain, gastrointestinal/dysuria symptoms, decreased everyday activity (<0.001), a decrease in anxiety/depression scores (BDI, HADS, STAI), and quality-of-life improvement (<0.001). These effects were accompanied by beneficial dynamics in hormone and inflammatory markers (prolactin, cortisol, testosterone, estradiol, CA-125, neutrophil/lymphocyte ratio; <0.005) within reference ranges. A low body mass index and high C-reactive protein levels were associated with higher VAS scores; a high estradiol level was a factor for anxiety/depression aggravation (<0.05). CONCLUSIONS: Dienogest, after surgical treatment, significantly improved quality of life and reduced pain symptoms while showing good tolerability and compliance, and reasoning with timely hormonal therapy in adolescents with endometriosis.

13.
J Assist Reprod Genet ; 40(5): 955-967, 2023 May.
Article in English | MEDLINE | ID: mdl-36964451

ABSTRACT

Endometriosis is a chronic inflammatory estrogen-dependent disease characterized by the growth of endometrial-like tissue outside the physiological region. Despite the fact that this disease is common, laparoscopic surgery is currently the gold standard in the treatment of endometriosis. In this regard, it is necessary to develop new effective methods of minimally invasive therapy for endometriosis. One of the promising areas in the treatment of endometriosis is cell therapy. Cellular therapy is a vast branch of therapeutic methods with various agents. Potential cell therapies for endometriosis may be based on the principle of targeting aspects of the pathogenesis of the disease: suppression of estrogen receptor activity, angiogenesis, fibrosis, and a decrease in the content of stem cells in endometriosis foci. In addition, immune cells such as NK cells and macrophages may be promising agents for cell therapy of endometriosis. Standing apart in the methods of cell therapy is the replacement therapy of endometriosis. Thus, many studies in the field of the pathogenesis of endometriosis can shed light not only on the causes of the disease and may contribute to the development of new methods for personalized cell therapy of endometriosis.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/therapy , Endometriosis/drug therapy , Estrogens/therapeutic use , Killer Cells, Natural , Endometrium/pathology , Cell- and Tissue-Based Therapy
14.
Biol. Res ; 56: 15-15, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429915

ABSTRACT

BACKGROUND: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS: The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS: Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS: Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.


Subject(s)
Animals , Male , Mice , Spleen/physiology , Spleen/transplantation , Splenectomy , Transplantation, Autologous , T-Lymphocytes , Disease Models, Animal
15.
Life (Basel) ; 12(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556436

ABSTRACT

Particle therapy is a developing area of radiotherapy, mostly involving the use of protons, neutrons and carbon ions for cancer treatment. The reduction of side effects on healthy tissues in the peritumoral area is an important advantage of particle therapy. In this review, we analyze state-of-the-art particle therapy, as compared to conventional photon therapy, to identify clinical benefits and specify the mechanisms of action on tumor cells. Systematization of published data on particle therapy confirms its successful application in a wide range of cancers and reveals a variety of biological effects which manifest at the molecular level and produce the particle therapy-specific molecular signatures. Given the rapid progress in the field, the use of particle therapy holds great promise for the near future.

17.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077265

ABSTRACT

Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.


Subject(s)
Kupffer Cells , Macrophages , Hepatocytes , Humans , Kupffer Cells/pathology , Liver/metabolism , Macrophages/pathology , Phenotype
18.
Sci Rep ; 12(1): 15469, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104441

ABSTRACT

Preeclampsia (PE) is a serious gestational complication affecting the life of a mother and child. The immunophenotype and gene expression profile of isolated blood monocyte subpopulations of pregnant women with PE have not been studied before. In this work, we assessed changes in CD14++ and CD16++ monocyte subpopulations in PE and physiological pregnancy (n = 33). Immunophenotyping, immunomagnetic sorting of monocytes and analysis of the transcriptional profile of their genes were carried out. The percentage of classical monocytes was significantly lower, while the intermediate fraction of monocytes was significantly higher in late-onset PE compared to control. Transcriptome analysis of late-onset PE classical CD14++ monocytes revealed significant activation of inflammation mediated by chemokine and cytokine signalling pathways; apoptosis; regulation of transcription from RNA polymerase II promoter in response to stress and others. The most suppressed signalling pathways were associated with T cell activation and selection. In CD16++ monocytes of late-onset PE cases, positive regulation of cell-cell adhesion, integrin signalling pathway, blood coagulation cascade were the most activated ones. The inflammation mediated by chemokine and cytokine signalling pathway and p53 pathway were the most down-regulated in CD16++ monocytes. The obtained results indicate profound changes occurring to two most polar monocyte subpopulations in PE and their different roles in the pathogenesis of this disease.


Subject(s)
Monocytes , Pre-Eclampsia , Cytokines/metabolism , Female , GPI-Linked Proteins , Gene Expression , Humans , Inflammation/metabolism , Lipopolysaccharide Receptors , Monocytes/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , Receptors, IgG/genetics , Receptors, IgG/metabolism
19.
Cells ; 11(16)2022 08 11.
Article in English | MEDLINE | ID: mdl-36010574

ABSTRACT

Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.7 monocyte/macrophage cell line and mouse-bone-marrow-derived macrophages (BMDMs). The impact of IRF5 knockdown was most pronounced, curtailing the expression of other inflammatory mediators such as IL-6 and NOS2, especially in M1-polarized macrophages. Contrary to IRF5, EGR2 knockdown potentiated M1-associated markers while altogether abolishing M2 marker expression, which is indicative of the principal role of EGR2 in the maintenance of alternative phenotypes. IRF3 knockdown suppressed M1 polarization but upregulated Arg 1, a canonical marker of alternative polarization in M1 macrophages. As anticipated, the knockdown of TLR4 also attenuated the M1 phenotype but, akin to IRF3, significantly induced Arginase 1 in M0 and M1, driving the phenotype towards M2. This study validates RNAi as a viable option for the alteration and maintenance of macrophage phenotypes.


Subject(s)
Macrophage Activation , Toll-Like Receptor 4 , Animals , Biomarkers/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Phenotype , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
20.
Front Immunol ; 13: 928171, 2022.
Article in English | MEDLINE | ID: mdl-35983046

ABSTRACT

The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.


Subject(s)
COVID-19 Drug Treatment , Estrogens/therapeutic use , Gonadal Steroid Hormones , Humans , Immune System , Menopause , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...