Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
BMC Complement Med Ther ; 24(1): 232, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877470

ABSTRACT

BACKGROUND: Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of ß-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS: This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS: Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION: The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.


Subject(s)
Antioxidants , Cholinesterase Inhibitors , Plant Bark , Plant Extracts , Tandem Mass Spectrometry , Vitex , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Plant Bark/chemistry , Tandem Mass Spectrometry/methods , Vitex/chemistry , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Humans
2.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931080

ABSTRACT

Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 µL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 µM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.

3.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929093

ABSTRACT

The search results offer comprehensive insights into the phenolic compounds, antioxidant, anti-inflammatory, cytotoxic effects, LC-MS/MS analysis, molecular docking, and MD simulation of the identified phenolic compounds in the Astragalus arpilobus subsp. hauarensis extract (AAH). The analysis revealed substantial levels of total phenolic content (TPC), with a measured value of 191 ± 0.03 mg GAE/g DM. This high TPC was primarily attributed to two key phenolic compounds: total flavonoid content (TFC) and total tannin content (TTC), quantified at 80.82 ± 0.02 mg QE/g DM and 51.91 ± 0.01 mg CE/g DM, respectively. LC-MS/MS analysis identified 28 phenolic compounds, with gallic acid, protocatechuic acid, catechin, and others. In the DPPH scavenging assay, the IC50 value for the extract was determined to be 19.44 ± 0.04 µg/mL, comparable to standard antioxidants like BHA, BHT, ascorbic acid, and α-tocopherol. Regarding anti-inflammatory activity, the extract demonstrated a notably lower IC50 value compared to both diclofenac and ketoprofen, with values of 35.73 µg/mL, 63.78 µg/mL, and 164.79 µg/mL, respectively. Cytotoxicity analysis revealed significant cytotoxicity of the A. arpilobus extract, with an LC50 value of 28.84 µg/mL, which exceeded that of potassium dichromate (15.73 µg/mL), indicating its potential as a safer alternative for various applications. Molecular docking studies have highlighted chrysin as a promising COX-2 inhibitor, with favorable binding energies and interactions. Molecular dynamic simulations further support chrysin's potential, showing stable interactions with COX-2, comparable to the reference ligand S58. Overall, the study underscores the pharmacological potential of A. arpilobus extract, particularly chrysin, as a source of bioactive compounds with antioxidant and anti-inflammatory properties. Further research is warranted to elucidate the therapeutic mechanisms and clinical implications of these natural compounds.

4.
BMC Complement Med Ther ; 24(1): 159, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609961

ABSTRACT

BACKGROUND: Polyalthia suberosa (Roxb.) Thwaites (Annonaceae) is a medicinal plant that has been reported for its various pharmacological potentials, such as its anti-inflammatory, analgesic, antioxidant, and neuropharmacological activities. This study aimed to analyze the leaf essential oils of P. suberosa (PSLO) collected in different seasons, to evaluate the acetylcholinesterase inhibitory activity, and to corroborate the obtained results via in-silico molecular docking studies. METHODS: The leaf essential oils of P. suberosa collected in different seasons were analyzed separately by GC/MS. The acetylcholinesterase inhibitory activity of the leaves oil was assessed via colorimetric assay. In-silico molecular docking studies were elucidated by virtual docking of the main compounds identified in P. suberosa leaf essential oil to the active sites in human acetylcholinesterase crystal structure. RESULTS: A total of 125 compounds were identified where D-limonene (0.07 - 24.7%), α-copaene (2.25 - 15.49%), E-ß-caryophyllene (5.17 - 14.42%), 24-noroleana-3,12-diene (12.92%), ß-pinene (0.14 - 8.59%), and α-humulene (2.49-6.9%) were the most abundant components. Results showed a noteworthy influence of the collection season on the chemical composition and yield of the volatile oils. The tested oil adequately inhibited acetylcholinesterase enzyme with an IC50 value of 91.94 µg/mL. Additionally, in-silico molecular docking unveiled that palmitic acid, phytol, p-cymene, and caryophyllene oxide demonstrated the highest fitting scores within the active sites of human acetylcholinesterase enzyme. CONCLUSIONS: From these findings, it is concluded that P. suberosa leaf oil should be evaluated as a food supplement for enhancing memory.


Subject(s)
Oils, Volatile , Polyalthia , Humans , Seasons , Acetylcholinesterase , Oils, Volatile/pharmacology , Molecular Docking Simulation , Anti-Inflammatory Agents, Non-Steroidal
5.
BMC Complement Med Ther ; 24(1): 73, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308284

ABSTRACT

Citrus fruit essential oil is considered one of the widely studied essential oils while its leaves attract less attention although being rich in nearly the same composition as the peel and flowers. The leaves of bitter orange or sour orange (Citrus aurantium L.) were extracted using three different techniques namely; hydrodistillation (HD), steam distillation (SD), and microwave-assisted distillation (MV) to compare their chemical composition. The three essential oil samples were analyzed through GC/FID and GC/MS analyses. The samples were tested in vitro using different antioxidant techniques (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA), neuroprotective enzyme inhibitory activities (acetylcholine and butyl choline enzymes), and antidiabetic activities (α-amylase and α-glucosidase). The results showed that thirty-five volatile ingredients were detected and quantified. Monoterpenes represented the most abundant class in the three essential oils followed by sesquiterpenes. C. aurantium essential oil carried potential antioxidant activity where SD exhibited the highest antioxidant activity, with values arranged in the following order: FRAP (200.43 mg TE/g), CUPRAC (138.69 mg TE/g), ABTS (129.49 mg TE/g), and DPPH (51.67 mg TE/g). SD essential oil also presented the most potent α-amylase (0.32) inhibition while the MV essential oil showed the highest α-glucosidase inhibition (2.73 mmol ACAE/g), followed by HD (2.53 mmol ACAE/g), and SD (2.46 mmol ACAE/g). The SD essential oil exhibited the highest BChE and AChE inhibitory activities (3.73 and 2.06 mg GALAE/g), respectively). Thus, bitter orange essential oil can act as a potential source of potent antioxidant, antidiabetic, and neuroprotective activities for future drug leads.


Subject(s)
Alzheimer Disease , Benzothiazoles , Citrus , Neuroprotective Agents , Oils, Volatile , Sulfonic Acids , Antioxidants/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/chemistry , Distillation , Alzheimer Disease/drug therapy , alpha-Glucosidases , Plant Extracts/pharmacology , Plant Extracts/chemistry , alpha-Amylases
6.
Fitoterapia ; 174: 105835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301936

ABSTRACT

Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.


Subject(s)
Acetates , Alkaloids , Chelidonium , Humans , Plant Extracts/chemistry , Chelidonium majus , Methanol , HEK293 Cells , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Solvents/chemistry , Antioxidants , Water , Chelidonium/chemistry
7.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288952

ABSTRACT

Phytolacca americana L. is of great interest as a traditional additive in various folk remedies in several countries, including Turkey. We aimed to determine the chemical profile (assisted by high-Performance liquid chromatography-electrospray ionization-tandem mass apectrometry (HPLC-ESI-MS/MS) experiments of three extracts obtained by different polarity solvents viz. ethyl acetate (to extract semipolar compounds), methanol and water (to extract highly polar metabolites) from P. americana leaves. Their anti-diabetic effects were investigated in vitro by assessing their inhibition toα-amylase and α-glucosidase. Assessment of the neuroprotective potential of the three extracts was carried out against acetyl-(AChE) and butyryl-(BChE) cholinesterase enzymes. HPLC-ESI-MS/MS experiments showed a total of 17 chromatographic peaks primarily classified to six flavonoids, two saponins, and six fatty acids. Antioxidant assays revealed remarkable activity for the ethyl acetate and methanol extracts. The BChE inhibition was considerably more significant (4.08 mg galantamine equivalent (GALAE)/g) for the ethyl acetate extract, whereas the methanol extract had good inhibitory efficacy for AChE (2.05 mg GALAE/g). Through network pharmacology, the compounds' mechanism of action of targeted key gene in their associated diseases were identified. The hubb gene signal transducer and activator of transcription 3 (STAT3) and tumour necrosis factor (TNFα) where the P. americana compound's site of action in inflammation bowel disease. The results offer possibilities for the prospective application of P. americana in metabolic regulation, blood glucose control, and as a source of bioactive compounds with cholinesterase enzyme inhibitory characteristics which could be of relevance in the cosmetic or pharmaceutical industry for combating melanogenesis.Communicated by Ramaswamy H. Sarma.

8.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069809

ABSTRACT

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , NF-E2-Related Factor 2 , Inflammation , Lung
9.
Arch Pharm (Weinheim) ; 357(2): e2300438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984852

ABSTRACT

Ifosfamide (IFOS) is a broad-spectrum chemotherapeutic agent that has been extensively used for breast cancer and other solid tumors. Unfortunately, its use is associated with toxicities of several organs. Stenocarpus sinuatus is an Australian tree belonging to the Proteaceae family. In the current study, the phytochemical constituents of S. sinuatus methanol leaf extract (SSLE) were assessed. In addition, the protective effect of SSLE against IFOS-induced nephrotoxicity and hepatotoxicity was evaluated. Rats were randomly divided into six groups: control, IFOS (50 mg/kg), IFOS + SSLE (100 mg/kg), IFOS + SSLE (200 mg/kg), IFOS + SSLE (400 mg/kg), and SSLE (400 mg/kg). Hepatoprotective and nephroprotective potency of SSLE was assessed using different biochemical parameters. The phytochemical investigation resulted in the isolation of four flavonoid glycosides (kaempferol 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, kaempferol 3-O-α-rhamnopyranoside, isorhamnetin 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, and quercetin 3-O-ß- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside) and a coumarin (scopoletin). This is the first report on the isolated compounds from the genus Stenocarpus. SSLE showed enhancement of kidney and liver functions and reduction of oxidative stress and inflammation. The histopathology of the investigated organs confirmed the protective effect of SSLE. In conclusion, SSLE is considered as a promising candidate that can be used in defense against the toxic effects of IFOS after further clinical trials.


Subject(s)
Ifosfamide , Kaempferols , Rats , Animals , Kaempferols/pharmacology , Ifosfamide/toxicity , Structure-Activity Relationship , Australia , Flavonoids/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Plant Extracts/pharmacology , Methanol , Phytochemicals
10.
Biomed Pharmacother ; 167: 115382, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778271

ABSTRACT

Clivia miniata (Lindl) is a member of the family Amaryllidaceae known for its chemically diverse alkaloids with a wide range of biological activities. Many reports revealed a direct role of oxidative stress in the early stage of Alzheimer's disease (AD). Meanwhile, ß-site amyloid precursor protein cleavage enzyme 1 (BACE-1) is a molecular target for the treatment of AD. We aimed to investigate C. miniata root, bulb, and aerial part chemical profiling, antioxidant, BACE-1, and AChE enzyme inhibitory activities. Results showed that the total root had the most potent radical scavenging activity as compared to the total bulb and aerial part, respectively. Ethanol root extract had the most potent BACE-1 inhibitory activity (IC50 = 0.02 ± 0.001 µg/mL) as compared to the bulb and aerial part (IC50 = 0.93 ± 0.13, 1.80 ± 0.24 µg/mL), respectively. Moreover, the total root extract mitigated AChE enzyme activity more than total bulb and aerial fractions with IC50 values of (0.06 ± 0.02, 0.58 ± 0.3, and 1.89 ± 0.42 µg/mL, respectively. Bioassay-guided acid-base fractionation confirmed superior BACE-1 inhibitory activity of the root fractions particularly, methylene chloride and ethyl acetate fractions with (IC50 values of 0.21 ± 0.60 and 0.01 ± 0.001 µg/mL), respectively. UPLC-MS analysis of ethyl acetate and methylene chloride fractions of C. miniata root led to the identification of eight phenolics and thirteen alkaloids, respectively. Molecular docking studies against BACE-1 protein revealed that lycorine di-hexoside, miniatine, and cliviaaline were the most promising hits. Further investigation of anti-AD potential of the aforementioned small molecules is required.


Subject(s)
Alkaloids , Alzheimer Disease , Amaryllidaceae , Antioxidants/pharmacology , Molecular Docking Simulation , Chromatography, Liquid , Methylene Chloride , Tandem Mass Spectrometry , Alkaloids/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alzheimer Disease/drug therapy , Plant Components, Aerial , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry
11.
BMC Complement Med Ther ; 23(1): 354, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803435

ABSTRACT

BACKGROUND: Dolomiaea costus (syn: Saussurea costus; Family Asteraceae) occupies an important place in the traditional Chinese medicinal plants and is prescribed for a wide range of disorders. The current study aimed to tentatively identify the phytoconstituents of D. costus extract and to explore antiproliferative activity against human breast cancer cells and its possible apoptotic mechanism along with antiviral activity against human adenovirus 5 (Adv-5). METHODS: The phytoconstituents of 70% ethanol extract of D. costus were assessed using HPLC/ESI-MS/MS technique. The cell viability was investigated against breast cancer cell line (MCF-7) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanistically, the apoptotic effects on the Bax, Bcl2 and Caspase 3 were determined via quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Further, the antiviral activity was assessed against Adv-5 based on virucidal and adsorption mechanisms. RESULTS: The HPLC/MS analysis of the extract revealed tentative identification of twenty compounds of polyphenolic nature, mainly flavonoids, lignans, coumarins, and anthocyanidins. The plant extract showed a cytotoxic effect against MCF-7 and Vero cells with IC50 values of 15.50 and 44 µg/ml, respectively, indicating its aggressiveness against the proliferation of breast cancer cells as confirmed by apoptotic genes expression which revealed upregulation of Bax and Caspase 3 but further insight analysis is needed to explore exact mechanistic pathway. Antiviral activity against Adv-5 was observed at a non-toxic concentration of the tested extract. CONCLUSIONS: Such observations against human breast cancer and viral replication supported further studies for nanoformulations in drug delivery systems as targeting therapy and in vivo studies before biomedical applications.


Subject(s)
Antineoplastic Agents , Asteraceae , Breast Neoplasms , Costus , Animals , Chlorocebus aethiops , Humans , Female , Breast Neoplasms/drug therapy , Caspase 3/metabolism , Costus/metabolism , Tandem Mass Spectrometry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Vero Cells , bcl-2-Associated X Protein , Chromatography, High Pressure Liquid , Antineoplastic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Apoptosis
12.
Arch Pharm (Weinheim) ; 356(12): e2300444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37754205

ABSTRACT

The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.


Subject(s)
Antioxidants , Hexanes , Antioxidants/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Hexanes/analysis , Methanol/analysis , Butyrylcholinesterase , Acetylcholinesterase , Tandem Mass Spectrometry , Plant Extracts/chemistry , Structure-Activity Relationship
13.
Eur J Med Res ; 28(1): 240, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464425

ABSTRACT

Flaxseed (Linum usitatissimum L) is an ancient perennial plant species regarded as a multipurpose plant owing to its richness in omega-3 polyunsaturated fatty acids (PUFA) including α-linolenic acid (ALA). The extensive biochemical analysis of flaxseed resulted in the identification of its bioactive, i.e., lignans with potential application in the improvement of human health. Flaxseed oil, fibers, and lignans exert potential health benefits including reduction of cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, and autoimmune and neurological disorders that have led to the diversification of flaxseed plant applications. This comprehensive review focuses on flaxseed oil as the major product of flaxseed with emphasis on the interrelationship between its chemical composition and biological effects. Effects reviewed include antioxidant, anti-inflammatory, antimicrobial, anticancer, antiulcer, anti-osteoporotic, cardioprotective, metabolic, and neuroprotective. This study provides an overview of flaxseed oil effects with the reported action mechanisms related to its phytochemical composition and in comparison, to other PUFA-rich oils. This study presents the most updated and comprehensive review summarizing flaxseed oil's health benefits for the treatment of various diseases.


Subject(s)
Cardiovascular Diseases , Flax , Lignans , Humans , Linseed Oil/therapeutic use , Linseed Oil/chemistry , Linseed Oil/metabolism , Flax/chemistry , Flax/metabolism , Antioxidants/therapeutic use
14.
Chem Biodivers ; 20(9): e202300117, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37498319

ABSTRACT

Rhoifolin (apigenin-7-O-ß-neohesperidoside) belongs to the class of flavonoids and was reported to exhibit anti-inflammatory, cytotoxic, antidiabetic, hepatoprotective, and cardioprotective activities. The current study presents the in-vitro evaluation of the antioxidative effects of rhoifolin by many assays, namely DPPH, CUPRAC, ABTS, phosphomolybdenum, and FRAP. Enzyme inhibitory potential was also evaluated for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase enzymes. While results revealed weak antioxidant activities for rhoifolin, the compound demonstrated some promising enzyme inhibitory effects against BChE (4.03 mg GALAE/g) and tyrosinase (7.44 mg KAE/g) but was not active on AChE. Regarding anti-diabetic enzymes, the compound was active on amylase but did not show any inhibition effect on glucosidase. In-silico molecular docking study was performed for rhoifolin on the active site of NADPH oxidase, BChE, and amylase enzymes to verify the observed enzyme inhibitory effect. Good binding affinities were observed for rhoifolin on all the docked enzymes, revealing numerous hydrogen bonds, carbon-hydrogen, van der Waals interactions. This is the first study to evaluate the enzyme inhibition potential of rhoifolin. We concluded that the increase in the degree of glycosylation might decrease the antioxidant abilities of flavonoids and that rhoifolin had moderate enzyme inhibition abilities to be investigated in future studies.


Subject(s)
Antioxidants , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Butyrylcholinesterase , Molecular Docking Simulation , Acetylcholinesterase , Monophenol Monooxygenase , Plant Extracts/chemistry , Amylases , Glucosidases
15.
Plants (Basel) ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176843

ABSTRACT

Species belonging to the Zingiberaceae family are of high nutritional, industrial, and medicinal values. In this study, we investigated the effect of processing steps (fresh vs. dried milled rhizomes) and extraction methodologies (hydrodistillation vs. hexane extraction) of curcuma essential oil on its chemical content (using GC-MS analysis), its antioxidant behavior (using in vitro assays such as DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation), and its enzyme inhibitory activities (on tyrosinase, acetylcholinesterase, butylcholinesterase, α-amylase, and α-glucosidase) supported by multivariate analysis, in silico studies, and molecular dynamics. The GC-MS investigations revealed a high degree of similarity in the chemical profile of fresh hydrodistilled and hexane-extracted essential oils with tumerone and curlone being the major metabolites. The extraction techniques affected the concentrations of other minor constituents such as terpinolene, caryophylla-4(12), 8(13)-dien-5α-ol, and neo-intermedeol, which were almost exclusively detected in the hydrodistilled fresh essential oil; however, zingiberene and ß-sesquiphellandrene were predominant in the hexane-extracted fresh essential oil. In the dried curcuma rhizomes, tumerone and curlone contents were significantly reduced, with the former being detected only in the hydrodistilled essential oil while the latter was doubly concentrated in the hexane-derived oil. Constituents such as D-limonene and caryophyllene oxide represented ca. 29% of the dried hydrodistilled essential oil, while ar-turmerone was detected only in the dried hydrodistilled and hexane-extracted essential oils, representing ca. 16% and 26% of the essential oil composition, respectively. These variations in the essential oil chemical content have subsequently affected its antioxidant properties and enzyme inhibitory activities. In silico investigations showed that hydrophobic interactions and hydrogen bonding were the characteristic binding modes of the bioactive metabolites to their respective targets. Molecular dynamics revealed the stability of the ligand-target complex over time. From the current study we conclude that fresh hexane-extracted essential oil showed the best radical scavenging properties, and fresh rhizomes in general display better enzyme inhibitory activity regardless of the extraction technique.

16.
Life Sci ; 320: 121532, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858314

ABSTRACT

Alzheimer's disease (AD) is the most frequent type of dementia characterized by the deposition of amyloid beta (Aß) plaque and tau-neurofibrillary tangles (TNTs) in the brain. AD is associated with the disturbances of various neurotransmitters including gamma-aminobutyric acid (GABA). Of note, GABA is reduced in AD, and restoration of GABA effect by benzodiazepines (BDZs) may improve AD outcomes. However, BDZs may adversely affect cognitive functions chiefly in elderly AD patients with sleep disorders. Besides, there is a controversy regarding the use of BDZs in AD. Consequently, the objective of the present review was to disclose the possible role of BDZs on the pathogenesis of AD that might be beneficial, neutral, or detrimental effects on AD. Prolonged use of intermediate-acting BDZ lorazepam exerts amnesic effects due to attenuation of synaptic plasticity and impairment of recognition memory. However, BDZs may have a protective effect against the development of AD by reducing tau phosphorylation, neuroinflammation, and progression of AD neuropathology. On the other side, other findings highlighted that extended use of BDZs was not associated with the development of AD. In conclusion, there are controversial points concerning the use of BDZs and the risk for the progression of AD. Thus, preclinical, and clinical studies are essential in this regard.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides , Benzodiazepines/adverse effects , Neurofibrillary Tangles , gamma-Aminobutyric Acid , tau Proteins
17.
Amino Acids ; 55(12): 1765-1774, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36939919

ABSTRACT

Oxidative stress can be a series burden on human health and may lead to many chronic diseases such as diabetes and neurological disorders. The use of natural products to scavenge the reactive oxygen species has attracted the attention of many researchers, to safely manage these conditions with fewer side effects, in available and cost-effective ways. The current study aimed at the isolation and structure elucidation of sweroside from Schenkia spicata (Gentianaceae) and the evaluation of its antioxidant, antidiabetic, neuroprotective, and enzyme inhibitory potential via in vitro and in silico studies. The antioxidant potential was evaluated by a variety of assays as ABTS, CUPRAC and FRAP, showing values of 0.34 ± 0.08, 21.14 ± 0.43, and 12.32 ± 0.20 mg TE/g, respectively, while demonstrating 0.75 ± 0.03 mmol TE/g for phosphomolybdenum (PBD) assay. Acetylcholinestrase (AChE), butyrylcholinesterase (BChE) and tyrosinase inhibitory activities were used to evaluate the neuroprotective effect, while the antidiabetic potential was evaluated by measuring α-amylase and glucosidase inhibitory activities. Results revealed that sweroside showed antioxidant and inhibitory effects on the enzymes tested with the exception of AChE. It demonstrated good tyrosinase inhibitory ability with 55.06 ± 1.85 mg Kojic acid equivalent /g. Regarding the antidiabetic ability, the compound displayed both amylase and glucosidase (0.10 ± 0.01 and 1.54 ± 0.01 mmol Acarbose equivalent/g, respectively) inhibitory activities. Molecular docking studies of sweroside on the active sites of the aforementioned enzymes in addition to NADPH oxidase were performed using Discovery Studio 4.1 software. Results revealed good binding affinities of sweroside to these enzymes mainly through hydrogen bonds and van der Waals interactions. Sweroside can be an important antioxidant and enzyme inhibitory supplement, yet further in vivo and clinical studies are required.


Subject(s)
Antioxidants , Hypoglycemic Agents , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Docking Simulation , Iridoid Glycosides , Butyrylcholinesterase , Monophenol Monooxygenase , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucosidases
18.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838616

ABSTRACT

Annona glabra Linn is employed in conventional medicine to treat a number of human disorders, including cancer and viruses. In the present investigation, the significant phytochemical components of Annona glabra hexane extract were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Three major compounds were identified in the hexane extract: tritriacontane (30.23%), 13, 17-dimethyl-tritriacontane (22.44%), and limonene (18.97%). MTT assay was used to assess the cytotoxicity of the extract on six human cancer cell lines including liver (HepG-2), pancreas (PANC-1), lung (A-549), breast (MCF-7, HTB-22), prostate (PC-3), and colon (CACO-2, ATB-37). The extract exhibited significant cytotoxic activity against both CACO-2 and A-549 cancer cell lines (IC50 = 47 ± 0.74 µg/mL and 56.82 ± 0.92 µg/mL) in comparison with doxorubicin (IC50 = 31.91 ± 0.81 µg/mL and 23.39 ± 0.43 µg/mL) and of SI of 3.8 and 3.1, respectively. It also induced moderate-to-weak activities against the other cancerous cell lines: PC-3, PANC-1, MCF-7, and HepG-2 (IC50 = 81.86 ± 3.26, 57.34 ± 0.77, 80.31 ± 4.13, and 57.01 ± 0.85 µg/mL) in comparison to doxorubicin (IC50 = 32.9 ± 1.74, 19.07 ± 0.2, 15.48 ± 0.84 and 5.4 ± 0.22 µg/mL, respectively) and SI of 2.2, 3.1, 2.2, and 3.1, respectively. In vitro anti-HSV1 (Herpes simplex 1 virus) and HAV (Hepatitis A virus) activity was evaluated using MTT colorimetric assay with three different protocols to test protective, anti-replicative, and anti-infective antiviral activities, and three separate replications of each experiment were conducted. The plant extract showed promising protective and virucidal activity against HSV1 with no significant difference with acyclovir (79.55 ± 1.67 vs. 68.44 ± 7.62 and 70.91 ± 7.02 vs. 83.76 ± 5.67), while it showed mild protective antiviral activity against HAV (48.08 ±3.46) with no significant difference vs. acyclovir (36.89 ± 6.61). The selected main compounds were examined for their bioactivity through in silico molecular docking, which exhibited that limonene could possess the strongest antiviral properties. These findings support Annona glabra's conventional use, which is an effective source of antiviral and anticancer substances that could be used in pharmaceuticals.


Subject(s)
Annona , Humans , Gas Chromatography-Mass Spectrometry , Annona/chemistry , Antiviral Agents , Limonene , Hexanes , Molecular Docking Simulation , Caco-2 Cells , Doxorubicin , Acyclovir , Plant Extracts/chemistry
19.
Chem Biodivers ; 20(4): e202201045, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36811152

ABSTRACT

Cestrum diurnum L. (Solanaceae) is a fragrant ornamental tree cultivated in different parts around the world. In this study, the essential oil (EO) of the aerial parts was extracted by hydrodistillation (HD), steam distillation (SD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis of the three EOs revealed that phytol represents the major component in SD-EO and MAHD-EO (40.84 and 40.04 %, respectively); while in HD-EO it only represented 15.36 %. The SD-EO showed a strong antiviral activity against HCoV-229E with IC50 of 10.93 µg/mL, whereas, MAHD-EO and HD-EO showed a moderate activity with IC50 values of 119.9 and 148.2 µg/mL, respectively. The molecular docking of EO major components: phytol, octadecyl acetate and tricosane showed a strong binding to coronavirus 3-CL (pro). Moreover, the three EOs (50 µg/mL) decreased the levels of NO, IL-6 and TNF-α and suppressed IL-6 and TNF-α gene expression in LPS-induced inflammation model in RAW264.7 macrophage cell lines.


Subject(s)
Cestrum , Coronavirus 229E, Human , Oils, Volatile , Cestrum/chemistry , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6 , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Oils, Volatile/chemistry , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha , Antiviral Agents/chemistry , Antiviral Agents/pharmacology
20.
Int J Radiat Biol ; 99(2): 270-280, 2023.
Article in English | MEDLINE | ID: mdl-35675546

ABSTRACT

PURPOSE: Liver fibrosis is considered as one of the ultimate outcomes of chronic liver disorders, characterized by outrageous cell proliferation and abnormal deposition of extracellular matrix, resulting in sever pathological distortions in the architecture and performance of liver tissues. The present study aimed to investigate the protective properties of aqueous methanol extract of Acrocarpus fraxinifolius leaves (AFL) against liver fibrosis induced by dual toxicity of γ-irradiation and carbon tetrachloride (CCl4) in rats. METHODS: The animals were exposed to 2 Gy irradiation once/week concurrently with intraperitoneal administration of CCl4 (0.2 mL/100 g body weight) for seven weeks. Afterwards, liver toxicity and fibrosis were assessed biochemically at cellular and molecular as well as histopathological levels. RESULTS: The livers of intoxicated rats showed distinct structural and functional changes, compared with the normal rats. The administration of AFL (500 mg/kg, p.o) significantly ameliorated the histopathological manifestations of fibrotic liver evidenced by mitigated steatosis progression, necrosis, fibrotic septa, apoptotic bodies, and immunochistochemical studies of alpha-smooth muscle actin. Also, AFL increased the final body weight, total protein, albumin levels and albumin/globulin ratio. While, the absolute liver weight, liver enzymes, total cholesterol and triglycerides were reduced. A significant modulation was observed in hydroxyproline, transforming growth factor-ß and collagen-1expression. Furthermore, AFL exerted a direct effect on liver fibrosis by promoting extracellular matrix degradation via overexpression of the tissue inhibitor metalloproteinase-1, coupled with decease of metalloproteinase-9 activity. CONCLUSIONS: Our findings suggested that AFL effectively improved the architecture of fibrotic liver and modified the biochemical markers of liver fibrosis.


Subject(s)
Carbon Tetrachloride , Liver Cirrhosis , Animals , Rats , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Liver Cirrhosis/prevention & control , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver , Fibrosis , Plant Extracts/pharmacology , Body Weight , Albumins/adverse effects , Albumins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...