Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 217: 118415, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35430467

ABSTRACT

Wastewater treatment plants have been highlighted as a potential hotspot for the development and spread of antibiotic resistance. Although antibiotic resistant bacteria in wastewater present a public health threat, it is also possible that these bacteria play an important role in the bioremediation through the metabolism of antibiotics before they reach the wider environment. Here we address this possibility with a particular emphasis on stereochemistry using a combination of microbiology and analytical chemistry tools including the use of supercritical-fluid chromatography coupled with mass spectrometry for chiral analysis and high-resolution mass spectrometry to investigate metabolites. Due to the complexities around chiral analysis the antibiotic chloramphenicol was used as a proof of concept to demonstrate stereoselective metabolism due to its relatively simple chemical structure and availability over the counter in the U.K. The results presented here demonstrate the chloramphenicol can be stereoselectively transformed by the chloramphenicol acetyltransferase enzyme with the orientation around the first stereocentre being key for this process, meaning that accumulation of two isomers may occur within the environment with potential impacts on ecotoxicity and emergence of bacterial antibiotic resistance within the environment.


Subject(s)
Chloramphenicol , Wastewater , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Bacterial , Risk Assessment , Wastewater/microbiology
2.
Water Res ; 203: 117533, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34416649

ABSTRACT

Studies to understand the role wastewater treatment plants (WWTPs) play in the dissemination of antibiotics (ABs), and in the emergence of antibiotic resistance (ABR), play an important role in tackling this global crisis. Here we describe the abundance and distribution of 16 ABs, and 4 corresponding antibiotic resistance genes (ARGs), sampled from the influent to five WWTPs within a single river catchment. We consider four classes of antibiotics: fluroquinolones, macrolides, sulfamethoxazole and chloramphenicol, as well the corresponding antibiotic resistance genes qnrS, ermB, sul1 and catA. All antibiotics, apart from four fluroquinolones (besifloxacin, lomefloxacin, ulifloxacin, prulifloxacin), were detected within all influent wastewater from the 5 cities (1 city = 1 WWTP), as were the corresponding antibiotic resistance genes (ARGs). Strong correlations were observed between the daily loads of ABs and ARGs versus the size of the population served by each WWTP, as well as between AB and ARG loads at a single site. The efficiency of ABs and ARGs removal by the WWTPs varied according to site (and treatment process utilized) and target, although strong correlations were maintained between the population size served by WWTPs and daily loads of discharged ABs and ARGs into the environment. We therefore conclude that population size is the main determinant of the magnitude of AB and ARG burden in the environment.


Subject(s)
Anti-Bacterial Agents , Rivers , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Wastewater/analysis
3.
Front Microbiol ; 12: 562157, 2021.
Article in English | MEDLINE | ID: mdl-33935981

ABSTRACT

Although molecular genetic approaches have greatly increased our understanding of the evolution and spread of antibiotic resistance genes, there are fewer studies on the dynamics of antibiotic - bacterial (A-B) interactions, especially with respect to stereochemistry. Addressing this knowledge gap requires an interdisciplinary synthesis, and the development of sensitive and selective analytical tools. Here we describe SAM (stereoselective antimicrobial metabolism) workflow, a novel interdisciplinary approach for assessing bacterial resistance mechanisms in the context of A-B interactions that utilise a combination of whole genome sequencing and mass spectrometry. Chloramphenicol was used to provide proof-of-concept to demonstrate the importance of stereoselective metabolism by resistant environmental bacteria. Our data shows that chloramphenicol can be stereoselectively transformed via microbial metabolism with R,R-(-)-CAP being subject to extensive metabolic transformation by an environmental bacterial strain. In contrast S,S-(+)-CAP is not metabolised by this bacterial strain, possibly due to the lack of previous exposure to this isomer in the absence of historical selective pressure to evolve metabolic capacity.

4.
Environ Int ; 139: 105681, 2020 06.
Article in English | MEDLINE | ID: mdl-32251898

ABSTRACT

Antibiotic resistance (ABR) is now recognised as a serious global health and economic threat that is most efficiently managed via a 'one health' approach incorporating environmental risk assessment. Although the environmental dimension of ABR has been largely overlooked, recent studies have underlined the importance of non-clinical settings in the emergence and spread of resistant strains. Despite this, several research gaps remain in regard to the development of a robust and fit-for-purpose environmental risk assessment for ABR drivers such as antibiotics (ABs). Here we explore the role the environment plays in the dissemination of ABR within the context of stereochemistry and its particular form, enantiomerism. Taking chloramphenicol as a proof of principle, we argue that stereoisomerism of ABs impacts on biological properties and the mechanisms of resistance and we discuss more broadly the importance of stereochemistry (enantiomerism in particular) with respect to antimicrobial potency and range of action.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Global Health
SELECTION OF CITATIONS
SEARCH DETAIL
...