Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Neurosurg ; : 1-6, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457788

ABSTRACT

OBJECTIVE: A growing body of literature suggests that preoperative opioid exposure is an independent predictor of poor outcomes in surgical patients. No outcomes data exist on preoperative opioid use and craniotomies/craniectomies. The objective of this study was to determine the impact of preoperative opioid use on 90-day adverse events after craniotomy or craniectomy. METHODS: A single-center retrospective cohort study of 2445 patients undergoing a craniotomy/craniectomy between January 1, 2013, and October 1, 2018, was conducted. Baseline demographics, pre- and postoperative opioid use (morphine milligram equivalents [MMEs]), and surgical metrics were recorded. Patients were categorized based on whether they took prescription opioids preoperatively, defined as within 1 month of surgery, or were opioid naive. The outcomes were mortality and adverse events 90 days after craniotomy/craniectomy. RESULTS: Overall, 26.6% of patients composed the preoperative opioid group. The median daily MME intake among this group was 34.6 (IQR 14.1-90) MMEs. Lower employment rates (p < 0.001), uninsured status (p = 0.016), and intravenous drug use (p = 0.006) were associated with preoperative opioid use. Preoperative opioid use was associated with increased venous thromboembolism (p = 0.001), acute kidney injury (p = 0.002), acute respiratory failure (p < 0.001), myocardial infarction (p = 0.002), delirium (p < 0.001), and infection (p < 0.001). Preoperative opioid use was an independent predictor of overall 90-day adverse events (OR 1.643, 95% CI 1.289-2.095; p < 0.001) and 90-day mortality (OR 1.690, 95% CI 1.254-2.277; p < 0.001). CONCLUSIONS: Preoperative opioid use was independently associated with 90-day postoperative adverse events and mortality. Opioid use increases vulnerability in craniotomy/craniectomy patients and necessitates close monitoring to improve outcomes.

2.
Future Oncol ; 20(10): 579-591, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38060340

ABSTRACT

Standard-of-care first-line therapy for patients with newly diagnosed glioblastoma (ndGBM) is maximal safe surgical resection, then concurrent radiotherapy and temozolomide, followed by maintenance temozolomide. IGV-001, the first product of the Goldspire™ platform, is a first-in-class autologous immunotherapeutic product that combines personalized whole tumor-derived cells with an antisense oligonucleotide (IMV-001) in implantable biodiffusion chambers, with the intent to induce a tumor-specific immune response in patients with ndGBM. Here, we describe the design and rationale of a randomized, double-blind, phase IIb trial evaluating IGV-001 compared with placebo, both followed by standard-of-care treatment in patients with ndGBM. The primary end point is progression-free survival, and key secondary end points include overall survival and safety.


Glioblastoma (GBM) is a fast-growing brain tumor that happens in about half of all gliomas. Surgery is the first treatment for patients with newly diagnosed GBM, followed by the usual radiation and chemotherapy pills named temozolomide. Temozolomide pills are then given as a long-term treatment. The outcome for the patient with newly diagnosed GBM remains poor. IGV-001 is specially made for each patient. The tumor cells are removed during surgery and mixed in the laboratory with a small DNA, IMV-001. This mix is the IGV-001 therapy that is designed to give antitumor immunity against GBM. IGV-001 is put into small biodiffusion chambers that are irradiated to stop the growth of any tumor cells in the chambers. In the phase IIb study, patients with newly diagnosed GBM are chosen and assigned to either the IGV-001 or the placebo group. A placebo does not contain any active ingredients. The small biodiffusion chambers containing either IGV-001 or placebo are surgically placed into the belly for 48 to 52 h and then removed. Patients then receive the usual radiation and chemotherapy treatment. Patients must be adults aged between 18 and 70 years. Patients also should be able to care for themselves overall, but may be unable to work or have lower ability to function. Patients with tumors on both sides of the brain are not eligible. The main point of this study is to see if IGV-001 helps patients live longer without making the illness worse compared with placebo. Clinical Trial Registration: NCT04485949 (ClinicalTrials.gov).


Subject(s)
Brain Neoplasms , Drug Combinations , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Temozolomide/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Disease-Free Survival , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Immunotherapy , Antineoplastic Agents, Alkylating/therapeutic use , Randomized Controlled Trials as Topic
3.
Neurosurgery ; 94(4): 797-804, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37902322

ABSTRACT

BACKGROUND AND OBJECTIVES: Vertebral compression fracture (VCF) is a common, but serious toxicity of spinal stereotactic body radiotherapy (SBRT). Several variables that place patients at high risk of VCF have previously been identified, including advanced Spinal Instability Neoplastic Score (SINS), a widely adopted clinical decision criterion to assess spinal instability. We examine the role of tumoral endplate (EP) disruption in the risk of VCF and attempt to incorporate it into a simple risk stratification system. METHODS: This study was a retrospective cohort study from a single institution. Demographic and treatment information was collected for patients who received spinal SBRT between 2013 and 2019. EP disruption was noted on pre-SBRT computed tomography scan. The primary end point of 1-year cumulative incidence of VCF was assessed on follow-up MRI and computed tomography scans at 3-month intervals after treatment. RESULTS: A total of 111 patients were included. The median follow-up was 18 months. Approximately 48 patients (43%) had at least one EP disruption. Twenty patients (18%) experienced a VCF at a median of 5.2 months from SBRT. Patients with at least one EP disruption were more likely to experience VCF than those with no EP disruption (29% vs 6%, P < .001). A nomogram was created using the variables of EP disruption, a SINS of ≥7, and adverse histology. Patients were stratified into groups at low and high risk of VCF, which were associated with 2% and 38% risk of VCF ( P < .001). CONCLUSION: EP disruption is a novel risk factor for VCF in patients who will undergo spinal SBRT. A simple nomogram incorporating EP disruption, adverse histology, and SINS score is effective for quickly assessing risk of VCF. These data require validation in prospective studies and could be helpful in counseling patients regarding VCF risk and referring for prophylactic interventions in high-risk populations.


Subject(s)
Fractures, Compression , Radiosurgery , Spinal Fractures , Spinal Neoplasms , Humans , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Spinal Fractures/etiology , Fractures, Compression/diagnostic imaging , Fractures, Compression/etiology , Fractures, Compression/epidemiology , Radiosurgery/adverse effects , Radiosurgery/methods , Prospective Studies , Retrospective Studies , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/pathology
4.
Article in English | MEDLINE | ID: mdl-37976149

ABSTRACT

BACKGROUND AND OBJECTIVES: Cranial robotics are a burgeoning field of neurosurgery. To date, all cranial robotic systems described have been computerized, arm-based instruments that take up significant space in the operating room. The Medtronic Stealth Autoguide robot has a smaller operating room footprint and offers multiaxial, frame-based surgical targeting. The authors set out to define the surgical characteristics of a novel robotic platform for brain biopsy in a large patient cohort. METHODS: Patients who underwent stereotactic biopsy using the Stealth Autoguide cranial robotic platform from July 2020 to March 2023 were included in this study. Clinical, surgical, and histological data were collected and analyzed. RESULTS: Ninety-six consecutive patients (50 female, 46 male) were included. The mean age at biopsy was 53.7 ± 18.0 years. The mean target depth was 68.2 ± 15.3 mm. The biopsy diagnostic tissue acquisition rate was 100%. The mean time from incision to biopsy tissue acquisition was 15.4 ± 9.9 minutes. Target lesions were located throughout the brain: in the frontal lobe (n = 32, 33.3%), parietal lobe (n = 21, 21.9%), temporal lobe (n = 22, 22.9%), deep brain nuclei/thalamus (n = 13, 13.5%), cerebellum (n = 7, 7.3%), and brainstem (n = 1, 1.0%). Most cases were gliomas (n = 75, 78.2%). Patients were discharged home on postoperative day 0 or 1 in 62.5% of cases. A total of 7 patients developed postoperative complications (7.2%). CONCLUSION: This cranial robotic platform can be used for efficient, safe, and accurate cranial biopsies that allow for reliable diagnosis of intracranial pathology in a minimally invasive setting.

5.
Neurosurg Focus ; 55(2): E2, 2023 08.
Article in English | MEDLINE | ID: mdl-37527670

ABSTRACT

OBJECTIVE: Immune checkpoint inhibitor (ICI) efficacy in the treatment of metastatic renal cell carcinoma (RCC) without brain metastases (BMs) is well established in several clinical trials; however, patients with BMs were typically excluded from these trials. Therefore, the efficacy of ICI in the treatment or prevention of BM remains unclear. The primary aim of the study was to address the efficacy of ICI in treatment of patients with RCC BMs compared with patients receiving targeted therapies. A secondary aim was to evaluate the risk of RCC BM development among patients who received ICI versus targeted therapies early in their treatment course. METHODS: A retrospective single-center review between 2011 and 2018 identified 425 patients treated for metastatic RCC. The study group included patients who received ICI and/or targeted therapies during their disease. Data analyzed included demographic information, systemic treatments, overall survival from RCC diagnosis (OSRCC) and from BM diagnosis (OSBM), and BM development. Fisher's exact test was used to evaluate the frequency of BM occurrence. Survival was assessed using Kaplan-Meier curves and log-rank tests. RESULTS: Of the 425 patients, 125 received ICI and 300 were treated with molecular targeted agents only during their clinical course. BMs occurred in 113 (9.5%) of the 425 patients. Among patients with BMs, OSRCC was improved with the use of ICI (77.2 vs 25.2 months, p < 0.001), with 1-, 2-, and 5-year survival rates of 93.9%, 81.8%, and 62.6%, respectively. The use of ICI was associated with increased OSBM (21.7 vs 8.9 months, p = 0.001). The rate of BM development was lower when patients were treated with ICI (8/100 [8.0%]) compared with targeted therapy (47/267 [17.6%]) (OR 0.41, 95% CI 0.18-0.89; p = 0.021). CONCLUSIONS: ICI was associated with improved OSRCC and OSBM in patients with BMs and decreased the probability of BM development in patients with metastatic RCC. Prospective trials are needed to further evaluate optimal use of ICI in treatment of RCC BMs.


Subject(s)
Brain Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Retrospective Studies , Prospective Studies , Brain Neoplasms/pathology
7.
Neurosurgery ; 93(2): 320-329, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36861971

ABSTRACT

BACKGROUND: Spine metastases often cause significant pain, instability, and/or neurological morbidity. Local control (LC) of spine metastases has been augmented with advances in systemic therapies, radiation, and surgical technique. Prior reports suggest an association between preoperative arterial embolization and improved LC and palliative pain control. OBJECTIVE: To further elucidate the role of neoadjuvant embolization on LC of spine metastases and the potential for improved pain control in patients receiving surgery and stereotactic body radiotherapy (SBRT). METHOD: A retrospective single-center review between 2012 and 2020 identified 117 patients with spinal metastases from various solid tumor malignancies managed with surgery and adjuvant SBRT with or without preoperative spinal arterial embolization. Demographic information, radiographic studies, treatment characteristics, Karnofsky Performance Score, Defensive Veterans Pain Rating Scale, and mean daily doses of analgesic medications were reviewed. LC was assessed using magnetic resonance imaging obtained at a median 3-month interval and defined as progression at the surgically treated vertebral level. RESULTS: Of 117 patients, 47 (40.2%) underwent preoperative embolization, followed by surgery and SBRT and 70 (59.8%) underwent surgery and SBRT alone. Within the embolization cohort, the median LC was 14.2 months compared with 6.3 months among the nonembolization cohort ( P = .0434). Receiver operating characteristic analysis suggests ≥82.5% embolization predicted significantly improved LC (area under the curve = 0.808; P < .0001). Defensive Veterans Pain Rating Scale mean and maximum scores significantly decreased immediately after embolization ( P < .001). CONCLUSION: Preoperative embolization was associated with improved LC and pain control suggesting a novel role for its use. Additional prospective study is warranted.


Subject(s)
Radiosurgery , Spinal Neoplasms , Humans , Decompression, Surgical , Neoadjuvant Therapy , Pain/surgery , Prospective Studies , Radiosurgery/methods , Retrospective Studies , Spinal Neoplasms/radiotherapy , Treatment Outcome
8.
Phys Imaging Radiat Oncol ; 25: 100422, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36875327

ABSTRACT

Background and purpose: Mitigation of intrafraction motion (IM) is valuable in stereotactic radiotherapy (SRT) radiotherapy where submillimeter accuracy is desired. The purpose of this study was to investigate the application of triggered kilovoltage (kV) imaging for spine SRT patients with hardware by correlating kV imaging with patient motion and summarizing implications of tolerance for IM based on calculated dose. Materials and methods: Ten plans (33 fractions) were studied, correlating kV imaging during treatment with pre- and post-treatment cone beam computed tomography (CBCT). Images were taken at 20-degree gantry angle intervals during the arc-based treatment. The contour of the hardware with a 1 mm expansion was displayed at the treatment console to manually pause treatment delivery if the hardware was visually detected outside the contour. The treatment CBCTs were compared using retrospective image registration to assess the validity of contour-based method for pausing treatment. Finally, plans were generated to estimate dose volume objective differences in case of 1 mm deviation. Results: When kV imaging during treatment was used with the 1 mm contour, 100 % of the post-treatment CBCTs reported consistent results. One patient in the cohort exhibited motion greater than 1 mm during treatment which allowed intervention and re-setup during treatment. The average translational motion was 0.35 mm. Treatment plan comparison at 1 mm deviation showed little differences in calculated dose for the target and cord. Conclusions: Utilizing kV imaging during treatment is an effective method of assessing IM for SRT spine patients with hardware without increasing treatment time.

9.
Neuroradiol J ; 36(4): 479-485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36715098

ABSTRACT

BACKGROUND: and purpose: Primary central nervous system lymphoma (PCNSL) lesions often show avid contrast enhancement on T1-weighted contrast-enhanced MRI sequences. However, several case reports and a clinical study have described PCNSL in patients with no contrast enhancement on MRI. We assessed whether overall survival (OS) time was related to any tumor characteristics (lesion location, volume, and number; contrast enhancement; necrosis; proximity to the subarachnoid space; and edema) on MRI in patients with PCNSL. MATERIALS AND METHODS: We retrospectively reviewed records (MRI features, pathology, and survival data) of all patients at our institution with PCNSL who had been seen from, 2007 through 2017, and had undergone pretreatment MRI. RESULTS: We identified 79 patients (42 men, 37 women) with a mean age at diagnosis of 61.7 ± 10.4 years. The mean OS duration was 44.6 ± 41.7 months. The most common pathological diagnosis (74 patients) was diffuse large B-cell lymphoma. No associations were found between OS time and lesion location, volume, and number; contrast enhancement; necrosis; proximity to the subarachnoid space; or edema. However, a sole patient with non-enhancing PCNSL on MRI was found to have low-grade disease, with prolonged survival (>83 months). Several other patients with leptomeningeal disease had a mean OS time of 80 months. Patients with hemorrhagic lesions had a mean OS of 25.5 months. CONCLUSIONS: The survival time for patients with PCNSL may be longer than previously thought, especially for patients with leptomeningeal seeding and lesions with hemorrhagic components Also, non-enhancing tumors may be less aggressive than enhancing tumors.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Large B-Cell, Diffuse , Male , Humans , Female , Middle Aged , Aged , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Necrosis , Central Nervous System
10.
Cancers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36139527

ABSTRACT

The incidence of recurrent metastatic brain tumors is increasing due to advances in local therapy, including surgical and radiosurgical management, as well as improved systemic disease control. The management of recurrent brain metastases was previously limited to open resection and/or irradiation. In recent years, laser interstitial thermal therapy (LITT) has become a promising treatment modality. As systemic and intracranial disease burden increases in a patient, patients may no longer be candidates for surgical resection. LITT offers a relatively minimally invasive option for patients that cannot tolerate or do not want open surgery, as well as an option for accessing deep-seated tumors that may be difficult to access via craniotomy. This manuscript aims to critically review the available data regarding the use of LITT for recurrent intracranial brain metastasis. Ten of seventy-two studies met the criteria for review. Generally, the available literature suggests that LITT is a safe and feasible option for the treatment of recurrent brain metastases involving supratentorial and cortical brain, as well as posterior fossa and deep-seated locations. Among all studies, only one directly compared craniotomy to LITT in the setting of recurrent brain metastasis. Prospective studies are needed to better elucidate the role of LITT in the management of recurrent brain metastases.

11.
J Neurooncol ; 158(2): 167-177, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35246769

ABSTRACT

QUESTION: In patients with previously diagnosed glioblastoma who are suspected of experiencing progression, does repeat cytoreductive surgery improve progression free survival or overall survival compared to alternative interventions? TARGET POPULATION: These recommendations apply to adults with previously diagnosed glioblastoma who are suspected of experiencing progression of the neoplastic process and are amenable to surgical resection. RECOMMENDATION: Level II: Repeat cytoreductive surgery is recommended in progressive glioblastoma patients to improve overall survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Cytoreduction Surgical Procedures , Glioblastoma/surgery , Neurosurgeons , Practice Guidelines as Topic
12.
Acta Neurochir (Wien) ; 164(5): 1401-1405, 2022 05.
Article in English | MEDLINE | ID: mdl-34981192

ABSTRACT

To identify genes altered in a highly aggressive metastatic meningioma primary as well as its metastases. Exome sequencing of a primary anaplastic meningioma and metastatic lesions in which DNA could be extracted and compared to germline DNA. Genetic analysis of the metastatic sites found 31 common mutations among the primary tumor and two metastatic sites. Additionally, genetic mutations were identified which were either infrequently (MUC3A, ALDH1A3, HOXA1) or not at all previously described in meningiomas (CASS4, CMKLR1). Exome sequencing of a metastatic meningioma and its distant metastases outside the CNS identified mutations that were not previously well described.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/pathology , Mutation/genetics
13.
Curr Probl Cancer ; 46(2): 100805, 2022 04.
Article in English | MEDLINE | ID: mdl-34836657

ABSTRACT

Patient survival with renal cell carcinoma (RCC) has improved with the use of molecular targeted agents and immunotherapy. Given the potential activity of these agents in treating brain metastases, the role of aggressive local management with surgery and/or radiation may diminish. The aim of this study was to evaluate the role of aggressive local therapy for RCC brain metastasis in the setting of molecular targeted agents and/or checkpoint inhibitor therapy. A retrospective single-center review between 2011-2018 identified patients that developed brain metastasis from RCC. Data analyzed included demographic information, systemic treatments, intracranial interventions, progression free survival and overall survival (OS). Of 1194 patients, 108(9.0%) were diagnosed with brain metastasis from RCC. OS from diagnosis of brain metastasis (OSBM) was 12.3 months. OSBM was analyzed based on three treatment groups: systemic therapy (ST) only (2.0 months, n = 23), systemic and radiotherapy (RT + ST) (12.3 months, n = 52), and systemic and radiotherapy plus resection (Surg + RT + ST) (21.7 months, n = 33). Survival benefit was seen with Surg + RT + ST compared to ST (P = 0.001), but not RT + ST (P = 0.081). Progression free survival was significantly prolonged with Surg + RT + ST compared to RT + ST (10.9 vs 5.9 months, respectively, P = 0.04). Variables such as performance status and number of brain metastases at the time of brain metastasis diagnosis did not differ significantly. In the setting of molecular targeted agents and immunotherapy, resection may benefit the appropriate surgical candidate. Prospective clinical trials are necessary to better understand the role of aggressive RCC brain metastasis treatment. Micro Abstract • Renal cell brain metastasis is often excluded from studies and brain metastases effect a large portion of RCC patients. • Retrospective study of 1194 RCC patients, 108 patients had brain metastasis, determination of the role of surgical resection in the setting of recent advances in checkpoint inhibitors. • A benefit was seen in overall survival in patients that had surgical while undergoing radiation therapy and systemic therapies. • In the setting of molecular targeted agents and immunotherapy, resection may benefit the appropriate surgical candidate(s).


Subject(s)
Brain Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Brain Neoplasms/secondary , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/therapy , Male , Molecular Targeted Therapy , Prospective Studies , Retrospective Studies , Treatment Outcome
14.
J Parkinsons Dis ; 11(s2): S173-S182, 2021.
Article in English | MEDLINE | ID: mdl-34366374

ABSTRACT

At present there is a significant unmet need for clinically available treatments for Parkinson's disease (PD) patients to stably restore balance to dopamine network function, leaving patients with inadequate management of symptoms as the disease progresses. Gene therapy is an attractive approach to impart a durable effect on neuronal function through introduction of genetic material to reestablish dopamine levels and/or functionally recover dopaminergic signaling by improving neuronal health. Ongoing clinical gene therapy trials in PD are focused on enzymatic enhancement of dopamine production and/or the restoration of the nigrostriatal pathway to improve dopaminergic network function. In this review, we discuss data from current gene therapy trials for PD and recent advances in study design and surgical approaches.


Subject(s)
Parkinson Disease , Dopamine , Genetic Therapy , Humans , Neurons , Parkinson Disease/therapy
15.
J Neurooncol ; 154(3): 345-351, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34417709

ABSTRACT

PURPOSE: Extent of resection of low grade glioma (LGG) is an important prognostic variable, and may influence decisions regarding adjuvant therapy in certain patient populations. Immediate postoperative magnetic resonance image (MRI) is the mainstay for assessing residual tumor. However, previous studies have suggested that early postoperative MRI fluid-attenuated inversion recovery (FLAIR) (within 48 h) may overestimate residual tumor volume in LGG. Intraoperative magnetic resonance imaging (iMRI) without subsequent resection may more accurately assess residual tumor. Consistency in MRI techniques and utilization of higher magnet strengths may further improve both comparisons between MRI studies performed at different time points as well as the specificity of MRI findings to identify residual tumor. To evaluate the utility of 3 T iMRI in the imaging of LGG, we volumetrically analyzed intraoperative, early, and late (~ 3 months after surgery) postoperative MRIs after resection of LGG. METHODS: A total of 32 patients with LGG were assessed retrospectively. Residual tumor was defined as hyperintense T2 signal on FLAIR. Volumetric assessment was performed with intraoperative, early, and late postoperative FLAIR via TeraRecon iNtuition. RESULTS: Perilesional FLAIR parenchymal abnormality volumes were significantly different comparing intraoperative and early postoperative MRI (2.17 ± 0.45 cm3 vs. 5.47 ± 1.07 cm3, respectively (p = 0.0002)). A significant difference of perilesional FLAIR parenchymal abnormality volumes was also found comparing early and late postoperative MRI (5.47 ± 1.07 cm3 vs. 3.22 ± 0.64 cm3, respectively (p = 0.0001)). There was no significant difference between intraoperative and late postoperative Perilesional FLAIR parenchymal abnormality volumes. CONCLUSIONS: Intraoperative 3 T MRI without further resection appears to better reflect the volume of residual tumor in LGG compared with early postoperative 3 T MRI. Early postoperative MRI may overestimate residual tumor. As such, intraoperative MRI performed after completion of tumor resection may be more useful for making decisions regarding adjuvant therapy.


Subject(s)
Brain Neoplasms , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Disease Progression , Glioma/diagnostic imaging , Glioma/surgery , Humans , Magnetic Resonance Imaging , Neoplasm, Residual/diagnostic imaging , Neoplasm, Residual/surgery , Retrospective Studies
16.
Nat Commun ; 12(1): 4251, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253733

ABSTRACT

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4-9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dependovirus/genetics , Dopaminergic Neurons/metabolism , Gene Transfer Techniques , Genetic Therapy , Magnetic Resonance Imaging , Mesencephalon/pathology , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/physiopathology , Aromatic-L-Amino-Acid Decarboxylases/cerebrospinal fluid , Aromatic-L-Amino-Acid Decarboxylases/genetics , Child , Child, Preschool , Dyskinesias/physiopathology , Female , Genetic Therapy/adverse effects , Humans , Male , Metabolome , Motor Activity , Neurotransmitter Agents/cerebrospinal fluid , Neurotransmitter Agents/metabolism , Time Factors
17.
J Neurooncol ; 153(1): 161-167, 2021 May.
Article in English | MEDLINE | ID: mdl-33860429

ABSTRACT

PURPOSE: Leptomeningeal carcinomatosis (LMC) is a form of CNS cancer metastasis with severe morbidity. Intrathecal chemotherapy (ITC) administration through an implanted ventricular catheter reservoir (IVCR) is often utilized. Additionally, a nuclear imaging flow study can be performed prior to ITC administration to assess cerebrospinal fluid (CSF) flow. The clinical impact of a CSF flow study is unclear. METHODS: A retrospective chart review identified 31 patients with LMC that underwent IVCR placement between 2011 and 2019. Data extracted included patient demographics, nuclear imaging flow study, surgical complications, ITC toxicities and outcomes. RESULTS: Potential drug-induced neurologic toxicities (headache, nausea/vomiting, altered mental status, etc.) were noted in (n = 4/16) 25% of patients who underwent a flow study prior to initiation of ITC, compared to (n = 1/15) 6.6% of patients who did not undergo a flow study. Median overall survival (OS) was 4.0 and 32.8 months for the patients that underwent a flow study versus patients who did not, respectively (p < 0.01). The mean interval from IVCR implantation to initiation of ITC was 15.2 ± 8.5 days and 3.3 ± 3.0 days in patients who underwent CSF flow study and patients that did not, respectively (p < 0.0001). CONCLUSIONS: A flow study can provide information regarding CSF flow dynamics prior to initiation of ITC; however this might delay initiation of ITC which may negatively impact OS. Additionally, in our study patients that underwent a flow study had more ITC induced drug toxicity events compared to those that did not. Further studies are needed to clarify the role of CSF flow study in these patients.


Subject(s)
Catheters , Humans , Meningeal Carcinomatosis , Retrospective Studies
18.
Neurosurg Focus ; 50(2): E2, 2021 02.
Article in English | MEDLINE | ID: mdl-33524943

ABSTRACT

OBJECTIVE: High-grade gliomas (HGGs) inevitably recur and progress despite resection and standard chemotherapies and radiation. Viral therapies have emerged as a theoretically favorable adjuvant modality that might overcome intrinsic factors of HGGs that confer treatment resistance. METHODS: The authors present the results of systematic searches of the MEDLINE and ClinicalTrials.gov databases that were performed for clinical trials published or registered up to July 15, 2020. RESULTS: Fifty-one completed clinical trials were identified that made use of a virus-based therapeutic strategy to treat HGG. The two main types of viral therapies were oncolytic viruses and viral vectors for gene therapy. Among clinical trials that met inclusion criteria, 20 related to oncolytic viruses and 31 to gene therapy trials. No oncolytic viruses have progressed to phase III clinical trial testing, although there have been many promising early-phase results and no reported cases of encephalitis or death due to viral therapy. Three phase III trials in which viral gene therapy was used have been completed but have not resulted in any FDA-approved therapy. Recent efforts in this area have been focused on the delivery of suicide genes such as herpes simplex virus thymidine kinase and cytosine deaminase. CONCLUSIONS: Decades of research efforts and an improving understanding of the immunomodulatory effects of viral therapies for gliomas are informing ongoing clinical efforts aimed at improving outcomes in patients with HGG. The available clinical data reveal varied efficacy among different virus-based treatment strategies.


Subject(s)
Glioblastoma , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Adult , Glioblastoma/therapy , Glioma/therapy , Humans , Neoplasm Recurrence, Local
19.
J Neurooncol ; 151(3): 367-373, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33611704

ABSTRACT

INTRODUCTION: Most clinical trials in neurooncology are led by investigators primarily trained in neurology or medical oncology. While neurosurgeons are trained to be problem-solvers and innovators, research training has historically been focused on laboratory-based discovery approaches and formalized training in prospective clinical trials research is not part of routine graduate training. METHODS: We reviewed literature that demonstrates that innovation and problem-solving are integral to the practice of neurosurgery cite multiple examples of advances in technique and technology that may have had an empirical origin but that led to prospective clinical trials resulting in change in practice. RESULTS: Neurosurgeons have developed and led both traditional (clinical outcome-oriented) and translational prospective clinical trials that have evaluated the best use of currently available therapeutics or tested the ability of novel therapeutics to alter the biology and/or course of disease. CONCLUSIONS: In this review, we focus on a number of the recently developed technologies and therapeutics that were evaluated in clinical trials led or co-led by neurosurgeons. We also highlight some of the barriers that need to be addressed in order to foster neurosurgical participation and leadership in the prospective development of novel therapeutics.


Subject(s)
Central Nervous System Neoplasms/surgery , Clinical Trials as Topic , Neurosurgery/trends , Neurosurgical Procedures/methods , Brain Neoplasms/secondary , Brain Neoplasms/surgery , Humans , Internship and Residency , Medical Oncology/education , Neurosurgeons , Neurosurgery/education
20.
PLoS One ; 15(12): e0244383, 2020.
Article in English | MEDLINE | ID: mdl-33373402

ABSTRACT

BACKGROUND: Carboplatin is a potent cytoreductive agent for a variety of solid tumors. However, when delivered systemically, clinical efficacy for the treatment of high grade gliomas is poor due to limited penetration across the blood-brain barrier (BBB). Direct intracerebral (IC) convection-enhanced delivery (CED) of carboplatin has been used to bypass the BBB and successfully treat the F98 rat glioma. Based on these studies, we initiated a Phase I clinical trial. OBJECTIVE: This Phase I clinical trial was conducted to establish the maximum tolerated dose and define the toxicity profile of carboplatin delivered intracerebrally via convection enhanced delivery (CED) for patients with high grade glial neoplasms. METHODS: Cohorts of 3 patients with recurrent WHO grade III or IV gliomas were treated with escalating doses of CED carboplatin (1-4 µg in 54mL over 72 hours) delivered via catheters placed at the time of recurrent tumor resection. The primary outcome measure was determination of the maximum tolerated dose (MTD). Secondary outcome measures included overall survival (OS), progression-free survival (PFS), and radiographic correlation. RESULTS: A total of 10 patients have completed treatment with infusion doses of carboplatin of 1µg, 2µg, and 4µg. The total planned volume of infusion was 54mL for each patient. All patients had previously received surgery and chemoradiation. Histology at treatment include GBM (n = 9) and anaplastic oligodendroglioma (n = 1). Median KPS was 90 (range, 70 to 100) at time of treatment. Median PFS and OS were 2.1 and 9.6 months after completion of CED, respectively. A single adverse event possibly related to treatment was noted (generalized seizure). CONCLUSIONS: IC CED of carboplatin as a potential therapy for recurrent malignant glioma is feasible and safe at doses up to 4µg in 54mL over 72 hours. Further studies are needed to determine the maximum tolerated dose and potential efficacy.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/therapy , Carboplatin/administration & dosage , Glioma/therapy , Oligodendroglioma/therapy , Adult , Antineoplastic Agents/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Carboplatin/therapeutic use , Combined Modality Therapy , Convection , Feasibility Studies , Female , Glioma/diagnostic imaging , Glioma/pathology , Humans , Injections, Intralesional/instrumentation , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Grading , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/pathology , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...