Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632865

ABSTRACT

Escherichia coli strain FEX669 was isolated from retail ground chicken and shown to contain the extraintestinal pathogenic E. coli (ExPEC) virulence genes sfaD, focC, and iutA Because this presumptive ExPEC strain was isolated from a retail food item and it was a weak biofilm former, it was characterized using whole-genome sequencing using the PacBio RS II platform. Genomic analysis showed that the FEX669 chromosome is 4,973,943 bp long, with a GC content of 50.47%, and is accompanied by a ColV plasmid that is 237,102 bp long, with a GC content of 50.49%.

2.
Front Microbiol ; 11: 627997, 2020.
Article in English | MEDLINE | ID: mdl-33519788

ABSTRACT

The gold standard method for serotyping Escherichia coli has relied on antisera-based typing of the O- and H-antigens, which is labor intensive and often unreliable. In the post-genomic era, sequence-based assays are potentially faster to provide results, could combine O-serogrouping and H-typing in a single test, and could simultaneously screen for the presence of other genetic markers of interest such as virulence factors. Whole genome sequencing is one approach; however, this method has limited multiplexing capabilities, and only a small fraction of the sequence is informative for subtyping or identifying virulence potential. A targeted, sequence-based assay and accompanying software for data analysis would be a great improvement over the currently available methods for serotyping. The purpose of this study was to develop a high-throughput, molecular method for serotyping E. coli by sequencing the genes that are required for production of O- and H-antigens, as well as to develop software for data analysis and serotype identification. To expand the utility of the assay, targets for the virulence factors, Shiga toxins (stx 1, and stx 2) and intimin (eae) were included. To validate the assay, genomic DNA was extracted from O-serogroup and H-type standard strains and from Shiga toxin-producing E. coli, the targeted regions were amplified, and then sequencing libraries were prepared from the amplified products followed by sequencing of the libraries on the Ion S5™ sequencer. The resulting sequence files were analyzed via the SeroType Caller™ software for identification of O-serogroup, H-type, and presence of stx 1 , stx 2, and eae. We successfully identified 169 O-serogroups and 41 H-types. The assay also routinely detected the presence of stx 1a,c,d (3 of 3 strains), stx 2c-e,g (8 of 8 strains), stx 2f (1 strain), and eae (6 of 6 strains). Taken together, the high-throughput, sequence-based method presented here is a reliable alternative to antisera-based serotyping methods for E. coli.

3.
Int J Med Microbiol ; 308(8): 1043-1052, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30466554

ABSTRACT

Salmonella pathogenicity island 13 (SPI-13) contributes to the virulence of Salmonella. The majority of the SPI-13 genes encode proteins putatively involved in bacterial metabolism, however, their functions largely remain uncharacterized. It is currently unknown if SPI-13 contributes to metabolic fitness of Salmonella and, if so, what are the metabolic substrates for the protein encoded by genes within SPI-13. We employed Phenotype Microarray (Biolog, USA) to compare the metabolic properties of SPI-13 deficient mutant (ΔSPI-13) and the WT parent strain of non-typhoidal Salmonella enterica sub sp. enterica serovar Enteritidis (S. Enteritidis). The results of Phenotype Microarray revealed that SPI-13 is required for efficient utilization of two micronutrients, namely, d-glucuronic acid (DGA) and tyramine (TYR), as sole sources of carbon and/or nitrogen. By systematic deletion of the individual gene(s), we identified specific genes within SPI-13 that are required for efficient utilization of DGA (SEN2977-80) and TYR (SEN2967 and SEN2971-72) as sole nutrient sources. The results show that SPI-13 mediated DGA and TYR metabolic pathways afford nutritional fitness to S. Enteritidis. Comparative genomics analysis of the SPI-13 locus from 247 Salmonella strains belonging to 57 different serovars revealed that SPI-13 genes specifically involved in the metabolism of DGA and TYR are highly conserved in Salmonella enterica. Because DGA and TYR are naturally present as metabolic byproducts in the gastrointestinal tract and other host tissues, we propose a metabolic model that shows that the role of SPI-13 mediated DGA and TYR metabolism in the nutritional fitness of Salmonella is likely linked to nutritional virulence of this pathogen.


Subject(s)
Genome, Bacterial/genetics , Genomic Islands/physiology , Salmonella enteritidis/genetics , Salmonella enteritidis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Genes, Bacterial/genetics , Genomic Islands/genetics , Glucuronic Acid/metabolism , Models, Biological , Models, Chemical , Salmonella enteritidis/growth & development , Salmonella enteritidis/pathogenicity , Serogroup , Tyramine/metabolism , Virulence
4.
Vet Immunol Immunopathol ; 192: 1-7, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29042009

ABSTRACT

Unmethylated CpG motifs are known to stimulate mammalian toll-like receptor-9 expressing cells such as macrophages. However, the magnitude of immune-stimulation by CpG-motif can be sequence- and host-specific, implying the importance of identifying new immune-stimulatory motifs. This study aimed to determine the frequency distribution of 256 unique hexamers CpG-motifs in the Salmonella genome and to characterize their immune-stimulatory activity in avian host. We synthesized 256 CpG oligodeoxynucleotides (CpG-ODNs) each containing triplicates of a unique hexamer CpG-motif and tested their ability to induce expression of pro-inflammatory cytokine IL-1ß in avian macrophages using q-RT PCR in four rounds of screening assays. CpG-ODNs that induced significantly higher IL-1ß expression were also subjected to Griess assay to determine their ability to induce nitric oxide (NO) production in avian macrophages. This analysis resulted in identification of 7 CpG-ODNs that consistently induced IL-1ß expression and NO production in avian macrophages at a level similar to the expression achieved using commercially available PTO-CpG-ODN 2007 and LPS derived from Salmonella. To the best of our knowledge, this is the first report showing comprehensive screening of all possible unique CpG hexamer (n=256) motifs for their ability to induce IL-1ß expression and NO production in avian macrophages. We also show that the newly identified CpG-motifs with high immune-stimulatory activity are widely distributed in Salmonella genome. The CpG-ODNs identified in this study may serve as promising immunoprophylactics to potentiate innate responses in chickens against Salmonella and other infectious agents.


Subject(s)
Gene Expression Regulation/genetics , Interleukin-18/metabolism , Macrophages/metabolism , Nitric Oxide/metabolism , Oligodeoxyribonucleotides/genetics , Animals , Cell Line , Chickens/immunology , Chickens/microbiology , Genome, Bacterial/genetics , Real-Time Polymerase Chain Reaction , Salmonella enteritidis/genetics
6.
Gut Pathog ; 8: 16, 2016.
Article in English | MEDLINE | ID: mdl-27141235

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (S. Enteritidis) is a human and animal pathogen that causes gastroenteritis characterized by inflammatory diarrhea and occasionally an invasive systemic infection. Salmonella pathogenicity islands (SPIs) are horizontally acquired genomic segments known to contribute to Salmonella pathogenesis. The objective of the current study was to determine the contribution of SPI-13 to S. Enteritidis pathogenesis. METHODS: We deleted the entire SPI-13 (∆SPI-13) from the genome of S. Enteritidis CDC_2010K_0968 strain isolated from a human patient during the 2010 egg-associated outbreak in the US. The kinetics of infection of the wild-type parent and the ∆SPI-13 were compared in orally challenged day-old chickens and streptomycin pre-treated mice. The degree of intestinal inflammation and the survival of mutant strain within the avian (HD11) and murine (RAW264.7) macrophages were also determined. RESULTS: The deletion of the SPI-13 resulted in impaired infection kinetics of S. Enteritidis in streptomycin pre-treated mice which was characterized by significantly lower (P < 0.05) viable counts in the ceca, liver and spleen, impaired ability to induce intestinal inflammation and reduced survival within murine macrophages. Conversely, there were no significant differences in the infection kinetics of ∆SPI-13 in day-old chickens in any of the organs tested and the survival of ∆SPI-13 within chicken macrophages remained unaltered. CONCLUSIONS: The results of this study show that SPI-13 contributes to the pathogenesis of S. Enteritidis in streptomycin pre-treated mice but not in day-old chickens and raises the possibility that SPI-13 may play a role in pathogenesis and the host adaptation/restriction of Salmonella serovars.

7.
Appl Environ Microbiol ; 79(15): 4744-50, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793628

ABSTRACT

Lymph nodes (mandibular, mesenteric, mediastinal, and subiliac; n = 68) and fecal (n = 68) and hide (n = 35) samples were collected from beef carcasses harvested in an abattoir in Mexico. Samples were analyzed for Salmonella, and presumptive colonies were subjected to latex agglutination. Of the isolates recovered, a subset of 91 was characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility phenotyping. Salmonella was isolated from 100% (hide), 94.1% (feces), 91.2% (mesenteric), 76.5% (subiliac), 55.9% (mandibular), and 7.4% (mediastinal) of samples. From the 87 typeable isolates, eight Salmonella enterica serotypes, including Kentucky (32.2%), Anatum (29.9%), Reading (17.2%), Meleagridis (12.6%), Cerro (4.6%), Muenster (1.1%), Give (1.1%), and Mbandaka (1.1%), were identified. S. Meleagridis was more likely (P = 0.03) to be recovered from lymph nodes than from feces or hides, whereas S. Kentucky was more likely (P = 0.02) to be recovered from feces and hides than from lymph nodes. The majority (59.3%) of the Salmonella isolates were pansusceptible; however, multidrug resistance was observed in 13.2% of isolates. Typing by PFGE revealed that Salmonella strains generally clustered by serotype, but some serotypes (Anatum, Kentucky, Meleagridis, and Reading) were comprised of multiple PFGE subtypes. Indistinguishable PFGE subtypes and, therefore, serotypes were isolated from multiple sample types, and multiple PFGE subtypes were commonly observed within an animal. Given the overrepresentation of some serotypes within lymph nodes, we hypothesize that certain Salmonella strains may be better at entering the bovine host than other Salmonella strains or that some may be better adapted for survival within lymph nodes. Our data provide insight into the ecology of Salmonella within cohorts of cattle and offer direction for intervention opportunities.


Subject(s)
Cattle Diseases/microbiology , Polymorphism, Genetic , Salmonella Infections, Animal/microbiology , Salmonella/classification , Salmonella/genetics , Abattoirs , Animals , Cattle , Cattle Diseases/epidemiology , Drug Resistance, Multiple, Bacterial , Electrophoresis, Gel, Pulsed-Field/veterinary , Feces/microbiology , Lymph Nodes/microbiology , Mexico , Microbial Sensitivity Tests/veterinary , Phylogeny , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella Infections, Animal/epidemiology , Serotyping/veterinary , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...