Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Nat Cell Biol ; 26(3): 353-365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38443567

ABSTRACT

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.


Subject(s)
Embryo, Mammalian , Germ Layers , Pregnancy , Female , Humans , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Signal Transduction , Embryo Implantation
2.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37879938

ABSTRACT

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.


Subject(s)
Gene Regulatory Networks , Multiomics , Humans , Gene Regulatory Networks/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Embryo, Mammalian
5.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-36971487

ABSTRACT

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Subject(s)
Hippo Signaling Pathway , Signal Transduction , Cattle , Humans , Female , Pregnancy , Mice , Rats , Animals , Signal Transduction/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Blastocyst/metabolism , Placenta/metabolism , Mammals/metabolism , Cell Lineage
6.
Nat Cell Biol ; 25(3): 439-452, 2023 03.
Article in English | MEDLINE | ID: mdl-36732633

ABSTRACT

Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.


Subject(s)
Actins , Oocytes , Humans , Animals , Swine , Actins/genetics , Actins/metabolism , Oocytes/metabolism , Meiosis/genetics , Microtubules/metabolism , Kinetochores/metabolism , Chromosome Segregation , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Mammals/metabolism
7.
Science ; 378(6617): eabq4835, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264786

ABSTRACT

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Subject(s)
Mitochondria , Oocytes , RNA, Messenger, Stored , Animals , Female , Hydrogels , Mitochondria/genetics , Mitochondria/metabolism , Oocytes/metabolism , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Mice , Swine , Cattle , Egg Proteins/genetics , Egg Proteins/metabolism
8.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012172

ABSTRACT

Medically assisted reproduction, now considered a routine, successful treatment for infertility worldwide, has produced at least 8 million live births. However, a growing body of evidence is pointing toward an increased incidence of epigenetic/imprinting disorders in the offspring, raising concern that the techniques involved may have an impact on crucial stages of early embryo and fetal development highly vulnerable to epigenetic influence. In this paper, the key role of methylation processes in epigenesis, namely the essential biochemical/metabolic pathways involving folates and one-carbon cycles necessary for correct DNA/histone methylation, is discussed. Furthermore, potential contributors to epigenetics dysregulation during the three phases of assisted reproduction: preparation for and controlled ovarian hyperstimulation (COH); methylation processes during the preimplantation embryo culture stages; the effects of unmetabolized folic acid (UMFA) during embryogenesis on imprinting methyl "tags", are described. Advances in technology have opened a window into developmental processes that were previously inaccessible to research: it is now clear that ART procedures have the potential to influence DNA methylation in embryonic and fetal life, with an impact on health and disease risk in future generations. Critical re-evaluation of protocols and procedures is now an urgent priority, with a focus on interventions targeted toward improving ART procedures, with special attention to in vitro culture protocols and the effects of excessive folic acid intake.


Subject(s)
Genomic Imprinting , Reproductive Techniques, Assisted , DNA Methylation , Epigenesis, Genetic , Folic Acid , Reproduction , Reproductive Techniques, Assisted/adverse effects
10.
Science ; 375(6581): eabj3944, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35143306

ABSTRACT

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Subject(s)
Cell Cycle Proteins/metabolism , Kinesins/deficiency , Oocytes/physiology , Oocytes/ultrastructure , Spindle Apparatus/physiology , Spindle Poles/physiology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Animals , Cattle , Dynactin Complex/metabolism , Dyneins/metabolism , Female , Humans , Kinesins/genetics , Kinesins/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/physiology , Microtubule-Organizing Center/ultrastructure , Microtubules/metabolism , Recombinant Proteins/metabolism , Spindle Apparatus/ultrastructure , Spindle Poles/ultrastructure , Swine
11.
Biomolecules ; 12(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35204698

ABSTRACT

Methylation is an essential biochemical mechanism that is central to the transmission of life, and crucially responsible for regulating gametogenesis and continued embryo development. The methylation of DNA and histones drives cell division and regulation of gene expression through epigenesis and imprinting. Brain development and its maturation also depend on correct lipid methylation, and continued neuronal function depends on biogenic amines that require methylation for their synthesis. All methylation processes are carried out via a methyltransferase enzyme and its unique co-factor S-adenosylmethionine (SAM); the transfer of a methyl group to a target molecule results in the release of SAH (SA homocysteine), and then homocysteine (Hcy). Both of these molecules are toxic, inhibiting methylation in a variety of ways, and Hcy recycling to methionine is imperative; this is achieved via the one carbon cycle, supported by the folates cycle. Folate deficiency causes hyperhomocysteinaemia, with several associated diseases; during early pregnancy, deficiency interferes with closure of the neural tube at the fourth week of gestation, and nutraceutical supplementation has been routinely prescribed to prevent neural tube defects, mainly involving B vitamins, Zn and folates. The two metabolic pathways are subject to single nucleotide polymorphisms that alter their activity/capacity, often severely, impairing specific physiological functions including fertility, brain and cardiac function. The impact of three types of nutraceutical supplements, folic acid (FA), folinic acid (FLA) and 5 Methyl THF (MTHF), will be discussed here, with their positive effects alongside potentially hazardous secondary effects. The issue surrounding FA and its association with UMFA (unmetabolized folic acid) syndrome is now a matter of concern, as UMFA is currently found in the umbilical cord of the fetus, and even in infants' blood. We will discuss its putative role in influencing the acquisition of epigenetic marks in the germline, acquired during embryogenesis, as well as the role of FA in the management of cancerous disease.


Subject(s)
Folic Acid , Tetrahydrofolates , Carbon Cycle , Dietary Supplements , Female , Folic Acid/metabolism , Humans , Infant , Leucovorin , Mutation , Pregnancy , Tetrahydrofolates/metabolism
12.
Zygote ; 30(2): 149-158, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34313209

ABSTRACT

Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called 'in vitro toxicity' of 'essential amino acids' before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a 'global' demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, 'an essential amino acid', should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another 'semi-essential amino acid', is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine ß-synthase pathway is not active. In this way, cysteine is a 'real essential amino acid'. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.


Subject(s)
DNA Methylation , Fertilization in Vitro , Animals , Blastocyst , Epigenesis, Genetic , Fertilization in Vitro/methods , Homeostasis , Mice , Oxidative Stress , Reproductive Techniques, Assisted
13.
Development ; 148(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34661235

ABSTRACT

Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions.


Subject(s)
Blastocyst/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Humans , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics
14.
Nat Commun ; 12(1): 3679, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140473

ABSTRACT

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.


Subject(s)
Embryo Implantation/genetics , Embryonic Development , Gastrulation/genetics , Gene Expression Regulation, Developmental/genetics , Germ Layers/metabolism , Single-Cell Analysis/methods , Wnt Signaling Pathway , Bone Morphogenetic Protein 1/antagonists & inhibitors , Cell Lineage , Cells, Cultured , Embryo Implantation/physiology , Embryo, Mammalian , Fibroblast Growth Factors/metabolism , Gastrulation/physiology , Germ Layers/cytology , Humans , Image Processing, Computer-Assisted , Multigene Family , Nodal Protein/antagonists & inhibitors , RNA-Seq , Spatio-Temporal Analysis
15.
Commun Biol ; 4(1): 651, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140633

ABSTRACT

Assessment of the endometrium often necessitates a biopsy, which currently involves an invasive, transcervical procedure. Here, we present an alternative technique based on deriving organoids from menstrual flow. We demonstrate that organoids can be derived from gland fragments recovered from menstrual flow. To confirm they faithfully reflect the in vivo state we compared organoids derived from paired scratch biopsies and ensuing menstrual flow from patients undergoing in vitro fertilisation (IVF). We demonstrate that the two sets of organoids share the same transcriptome signature, derivation efficiency and proliferation rate. Furthermore, they respond similarly to sex steroids and early-pregnancy hormones, with changes in morphology, receptor expression, and production of 'uterine milk' proteins that mimic those during the late-secretory phase and early pregnancy. This technique has wide-ranging impact for non-invasive investigation and personalised approaches to treatment of common gynaecological conditions, such as endometriosis, and reproductive disorders, including failed implantation after IVF and recurrent miscarriage.


Subject(s)
Endometrium/cytology , Menstruation , Organoids/cytology , Adult , Cells, Cultured , Endometrium/growth & development , Endometrium/metabolism , Female , Fertilization in Vitro , Humans , Organoids/growth & development , Organoids/metabolism , Pilot Projects
16.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33964210

ABSTRACT

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/genetics , Aneuploidy , Animals , Cattle , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Centrosome/metabolism , Chromosome Segregation/physiology , Chromosomes/metabolism , Fertilization/genetics , Humans , Male , Microtubules/metabolism , Mitosis , Oocytes/metabolism , Spermatozoa/metabolism , Zygote/metabolism
17.
Int J Mol Sci ; 21(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297303

ABSTRACT

Methylation is a universal biochemical process which covalently adds methyl groups to a variety of molecular targets. It plays a critical role in two major global regulatory mechanisms, epigenetic modifications and imprinting, via methyl tagging on histones and DNA. During reproduction, the two genomes that unite to create a new individual are complementary but not equivalent. Methylation determines the complementary regulatory characteristics of male and female genomes. DNA methylation is executed by methyltransferases that transfer a methyl group from S-adenosylmethionine, the universal methyl donor, to cytosine residues of CG (also designated CpG). Histones are methylated mainly on lysine and arginine residues. The methylation processes regulate the main steps in reproductive physiology: gametogenesis, and early and late embryo development. A focus will be made on the impact of assisted reproductive technology and on the impact of endocrine disruptors (EDCs) via generation of oxidative stress.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Histone Code , Animals , Embryonic Development/genetics , Gametogenesis , Humans , Reproductive Techniques, Assisted/adverse effects
18.
Nature ; 587(7834): 443-447, 2020 11.
Article in English | MEDLINE | ID: mdl-32968278

ABSTRACT

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Subject(s)
Biological Evolution , Ectoderm/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Transcription, Genetic , Trophoblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cattle , Cell Lineage , Cell Polarity , Ectoderm/cytology , Embryo, Mammalian/enzymology , Female , GATA3 Transcription Factor/metabolism , Hippo Signaling Pathway , Humans , Mice , Morula/cytology , Morula/enzymology , Morula/metabolism , Placenta/cytology , Placenta/metabolism , Pregnancy , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transcription Factors/metabolism , Trophoblasts/cytology , YAP-Signaling Proteins , Yolk Sac/cytology , Yolk Sac/metabolism
20.
Nat Commun ; 11(1): 764, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034154

ABSTRACT

Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.


Subject(s)
Cell Self Renewal/physiology , Human Embryonic Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Activins/metabolism , Animals , Blastocyst/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Culture Media/chemistry , Culture Media/metabolism , Culture Media/pharmacology , Endoderm/cytology , Endoderm/metabolism , Extraembryonic Membranes/cytology , Extraembryonic Membranes/metabolism , Fibroblasts/cytology , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transcriptome , X Chromosome Inactivation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL