Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 12(1): 1-17, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33079623

ABSTRACT

Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.


Subject(s)
Cellulose/metabolism , Dietary Fiber/metabolism , Epithelial Cells/metabolism , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/immunology , Animals , Anti-Inflammatory Agents/metabolism , Bacteroidetes/metabolism , Colitis/pathology , Inflammation/pathology , Interleukins/biosynthesis , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis-Associated Proteins/biosynthesis , Interleukin-22
2.
J Virol ; 89(22): 11654-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26355094

ABSTRACT

UNLABELLED: In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR(-/-))-CD46Ge mice with 2 × 10(5) 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE: Although MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.


Subject(s)
Coronavirus Infections/prevention & control , Measles Vaccine/immunology , Measles virus/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Proliferation , Chlorocebus aethiops , Cloning, Molecular/methods , Coronavirus Infections/immunology , Dendritic Cells/immunology , HEK293 Cells , Humans , Immunity, Cellular/immunology , Interferon-gamma/metabolism , Measles virus/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...