Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Contam Hydrol ; 264: 104362, 2024 May.
Article in English | MEDLINE | ID: mdl-38735087

ABSTRACT

A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1-3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g-1 for MB and 654 mg g-1 for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.


Subject(s)
Anti-Bacterial Agents , Graphite , Hydrogels , Water Pollutants, Chemical , Graphite/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/chemistry , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Water Purification/methods , Polymers/chemistry , Methylene Blue/chemistry , Plastics/chemistry
2.
Polymers (Basel) ; 16(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675053

ABSTRACT

Designers actively pursue the use of novel materials and concepts in furniture and interior design. By providing insights into their processing behavior and suitability for 3D-printing processes, this research helps to highlight the potential of using waste materials to create more environmentally friendly and sustainable 3D-printing filaments that can be used in furniture and interior design. Furthermore, the study evaluates the effect of incorporating palm midrib nanoparticles (DPFNPs) to reinforce a high-density polyethylene (HDPE) matrix with different loadings such as 10, 20, 30, 40, and 50 wt.%. The composites were extruded into filaments using a manual extruder, which was then utilized to fabricate 3D-printed specimens using a 3D-printing pen. The effect of adding DPFNPs on the composite's chemical, thermal, and mechanical properties was evaluated, with a particular focus on how these modifications influence the melt flow rate (MFR) and, subsequently, the material's printability. The results revealed that HDPE and filament composites presented similar FTIR spectra. On the other hand, the filament composites presented an increase in the thermal stability and a decrease in the mechanical strength with increasing DPFNP content in the HDPE matrix. The filaments were successfully printed using a 3D-printing pen. Thus, using DPFNPs in the HDPE matrix presents a low-cost alternative for filament production and may expand 3D-printing applications in interior and furniture design with more sustainable materials. Future work will delve into optimizing these composites for improved printability and assessing their recyclability, aiming to broaden their applications in 3D printing and beyond.

3.
Sci Rep ; 13(1): 21045, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030752

ABSTRACT

The current prevalence of cancerous diseases necessitates the exploration of materials that can effectively treat these conditions while minimizing the occurrence of adverse side effects. This study aims to identify materials with the potential to inhibit the metastasis of cancerous diseases within the human body while concurrently serving as therapeutic agents for their treatment. A novel approach was employed to enhance the anti-cancer properties of electrospun cellulose fibers by incorporating fullerene nanoparticles (NPs) into cellulose acetate (CA) fibers, resulting in a composite material called Fullerene@CA. This development aimed at utilizing the anti-cancer properties of fullerenes for potential therapeutic applications. This process has been demonstrated in vitro against various types of cancer, and it was found that Fullerene@CA nanocomposite fibers displayed robust anticancer activity. Cancer cells (Caco-2, MDA-MB 231, and HepG-2 cells) were inhibited by 0.3 and 0.5 mg.g-1 fullerene doses by 58.62-62.87%, 47.86-56.43%, and 48.60-57.73%, respectively. The tested cancer cells shrink and lose their spindle shape due to morphological changes. The investigation of the prepared nanocomposite reveals its impact on various genes, such as BCL2, NF-KB, p53, Bax, and p21, highlighting the therapeutic compounds' effectiveness. The experimental results demonstrated that the incorporation of NPs into CA fibers resulted in a significant improvement in their anti-cancer efficacy. Therefore, it is suggested that these modified fibers could be utilized as a novel therapeutic approach for the treatment and prevention of cancer metastasis.


Subject(s)
Fullerenes , Nanocomposites , Neoplasms , Humans , Fullerenes/pharmacology , Fullerenes/therapeutic use , Caco-2 Cells , Cellulose
4.
Sci Rep ; 12(1): 12701, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882879

ABSTRACT

Adsorption efficiency of Cefotaxime by novel nanocomposites beads composed of iota carrageenan (IC), sulfonated poly vinyl alcohol (SPVA) and nano sulfated zirconia (SZrO2) was evaluated in this study. SZrO2 was synthesized from solvent-free and easy calcination technique then embedded with 1-2.5 wt.% into the polymeric matrix. A batch adsorption experiment was carried out to investigate the effects of dosage, pH, beginning concentration, and time on Cefotaxime antibiotic adsorption. The ideal conditions to achieve complete removal are 88.97 mg L-1 initial cefotaxime concentration at time 3.58 h with 11.68 mg of beads composite with 2.5 wt.% of SZrO2. The pseudo second order kinetics model better illustrated the adsorption of cefotaxime on nanocomposite beads, and the maximum adsorption capacity are 659 mg g-1 for the composite with 2.5 wt.% of SZrO2. The mechanism of adsorption process depend mainly on the interactions between the different functional groups of SPVA, IC and SZrO2. The nanocomposites beads also exhibit excellent reproducibility after ten adsorption cycles. This type of nanocomposites beads can be easily separated from water without leaving any residue, verifying this novel nanocomposite beads has strong potential in water treatment for the antibiotic contaminant removal.


Subject(s)
Chitosan , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Cefotaxime , Chitosan/chemistry , Hydrogen-Ion Concentration , Kinetics , Nanocomposites/chemistry , Polymers/chemistry , Reproducibility of Results , Sulfates , Water Pollutants, Chemical/chemistry , Water Purification/methods , Zirconium
5.
Polymers (Basel) ; 14(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35566959

ABSTRACT

In our daily lives and product manufacturing, metal corrosion causes significant economic losses. Numerous polymeric composite coatings have been shown to be resistant to harsh environments, such as those found in marine environments. In this study, a composite of polyvinyl alcohol/polyaniline blend loaded with carboxylated graphene was explored in the search for long-lasting coatings to resist electrochemical deterioration of cast iron in desalination systems of saltwater. Polyvinyl alcohol/polyaniline/carboxylated graphene oxide nanocomposite was spin-coated onto cast iron samples. Electrochemical impedance spectroscopy (EIS) and electrochemical DC corrosion testing with a three-electrode system were used to study corrosion resistance in uncoated and coated cast iron samples. The results exhibit effective corrosion protection properties. The EIS data indicated better capacitance and higher impedance values for coated samples than bare metal, depicting enhanced corrosion resistance against the saline environment. Tafel analysis confirmed a significant decrease in the corrosion rate of the PVA/PANI/GO-COOH coated sample.

6.
Polymers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458309

ABSTRACT

Effective and efficient removal of both heavy metal pollutants and bacterial contamination from fresh water is an open issue, especially in developing countries. In this work, a novel eco-friendly functional composite for water treatment application was investigated. The composite consisted of electrospun nanofiber membrane from blended polyvinyl alcohol (PVA)/iota carrageenan (IC) polymers doped with equal concentrations of graphene oxide (GO) nanoparticles and polyaniline (PANI). The effectiveness of this composite as a water purification fixed-bed filter was optimized in a batch system for the removal of cadmium (Cd+2) and lead (Pb+2) ions, and additionally characterized for its antimicrobial and antifungal properties and cytotoxicity effect. The fiber nanocomposite exhibited efficient antibacterial activity, with maximum adsorption capacity of about 459 mg g-1 after 120 min for Cd+2 and of about 486 mg g-1 after 90 min for Pb+2. The optimized conditions for removal of both metals were assessed by using a response surface methodology model. The resulting scores at 25 °C were 91.4% (Cd+2) removal at 117 min contact time for 89.5 mg L-1 of initial concentration and 29.6 cm2 membrane area, and 97.19% (Pb+2) removal at contact time 105 min for 83.2 mg L-1 of initial concentration and 30.9 cm2 nanofiber composite membrane. Adsorption kinetics and isotherm followed a pseudo-second-order model and Langmuir and Freundlich isotherm model, respectively. The prepared membrane appears to be promising for possible use in domestic water purification systems.

7.
Polymers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34883705

ABSTRACT

The direct borohydride fuel cell (DBFC) is a low-temperature fuel cell that requires the development of affordable price and efficient proton exchange membranes for commercial purposes. In this context, super-acidic sulfated zirconia (SO4ZrO2) was embedded into a cheap and environmentally friendly binary polymer blend, developed from poly(vinyl alcohol) (PVA) and iota carrageenan (IC). The percentage of SO4ZrO2 ranged between 1 and 7.5 wt.% in the polymeric matrix. The study findings revealed that the composite membranes' physicochemical features improved by adding increasing amounts of SO4ZrO2. In addition, there was a decrease in the permeability and swelling ratio of the borohydride membranes as the SO4ZrO2 weight% increased. Interestingly, the power density increased to 76 mW cm-2 at 150 mA cm-2, with 7.5 wt.% SO4ZrO2, which is very close to that of Nafion117 (91 mW cm-2). This apparent selectivity, combined with the low cost of the eco-friendly fabricated membranes, points out that DBFC has promising future applications.

8.
Sci Rep ; 11(1): 20456, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650075

ABSTRACT

Wound healing is a complicated multicellular process that involves several kinds of cells including macrophages, fibroblasts, endothelial cells, keratinocytes and platelets that are leading to their differentiation towards an anti-inflammatory response for producing several chemokines, cytokine and growth factors. In this study, electrospun nanofiber scaffold named (MNS) is composed of polyvinyl alcohol (PVA)/iota carrageenan (IC) and doped with partially reduced graphene oxide (prGO) that is successfully synthesized for wound healing and skin repair. The fabricated MNS was tested in case of infection and un-infection with E. coli and Staphylococcus and in both of the presence and in the absence of yeast as a natural nutritional supplement. Numerous biochemical parameters including total protein, albumin, urea and LDH, and hematological parameters were evaluated. Results revealed that the MNS was proved to be effective on most of the measured parameters and had exhibited efficient antibacterial inhibition activity. Whereas it can be used as an effective antimicrobial agent in wound healing, however, histopathological findings confirmed that the MNS caused re-epithelialization and the presence of yeast induced hair follicles growth and subsequently it may be used to hide formed head wound scar.


Subject(s)
Carrageenan/therapeutic use , Graphite/therapeutic use , Nanofibers/therapeutic use , Polyvinyl Alcohol/therapeutic use , Wound Healing/drug effects , Animals , Cell Line , Escherichia coli Infections/prevention & control , Humans , Male , Rats , Rats, Wistar , Staphylococcal Skin Infections/prevention & control , Tissue Scaffolds
9.
Polymers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201464

ABSTRACT

A direct borohydride fuel cell (DBFC) is a type of low temperature fuel cell which requires efficient and low cost proton exchange membranes in order to commercialize it. Herein, a binary polymer blend was formulated from inexpensive and ecofriendly polymers, namely polyethylene oxide (PEO) and poly vinyl alcohol (PVA). Phosphated titanium oxide nanotube (PO4TiO2) was synthesized from a simple impregnation-calcination method and later embedded for the first time as a doping agent into this polymeric matrix with a percentage of 1-3 wt%. The membranes' physicochemical properties such as oxidative stability and tensile strength were enhanced with increasing doping addition, while the borohydride permeability, water uptake, and swelling ratio of the membranes decreased with increasing PO4TiO2 weight percentage. However, the ionic conductivity and power density increased to 28 mS cm-1 and 72 mWcm-2 respectively for the membrane with 3 wt% of PO4TiO2 which achieved approximately 99% oxidative stability and 40.3 MPa tensile strength, better than Nafion117 (92% RW and 25 MPa). The fabricated membrane with the optimum properties (PVA/PEO/PO4TiO2-3) achieved higher selectivity than Nafion117 and could be efficient as a proton exchange membrane in the development of green and low cost DBFCs.

10.
Heliyon ; 7(4): e06627, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33889767

ABSTRACT

Several reinforcement materials are incorporated into a polymeric matrix to improve the mechanical properties and reduce the cost of the obtained composites. In this work, recycled high-density polyethylene/waste glass powder composites, compatibilized with maleic anhydride-grafted polyethylene, were prepared using a two-roll mill and compression molding techniques. Four levels of waste glass powder, 2, 10, 20 and 30% by weight, and five levels of the compatibilizer, polyethylene grafted with maleic anhydride (0.5, 1.5, 2.5, 5 and 7.5%by weight), were used. The effect of adding waste glass powder and compatibilizer concentration on the composite's mechanical properties, such as tensile strength, tensile strain, tensile modulus and thermal properties was studied. The results showed that superior mechanical properties were obtained and that the tensile strength and modulus increased with increasing waste glass powder content and compatibilizer concentration by 20 and 1.5 wt%, respectively. However, the elongation at the break decreased with the increase in both factors. The composite, which was prepared under ideal conditions, has high thermal stability and can be easily recycled and reprocessed for five cycles with high mechanical properties. This study recommends that the prepared composite, under optimum conditions, can be used as a cost-effective automobile dashboard material.

11.
Materials (Basel) ; 13(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316607

ABSTRACT

Tungsten oxide nanostructures were modified by oxygen vacancies through hydrothermal treatment. Both the crystalline structure and morphological appearance were completely changed. Spherical WO3·H2O was prepared from tungstic acid solution by aging at room temperature, while rod-like WO3·0.33H2O was prepared by hydrothermal treatment of tungstic acid solution at 120 °C. These structures embedded in sodium alginate (SA)/polyvinylpyrrolidone (PVP) were synthesized as novel porous beads by gelation method into calcium chloride solution. The performance of the prepared materials as photocatalysts is examined for methylene blue (MB) degradation in aqueous solutions. Different operation parameters affecting the dye degradation process, such as light intensity, illumination time, and photocatalyst dosage are investigated. Results revealed that the photocatalytic activity of novel nanocomposite changed with the change in WO3 morphology. Namely, the beads with rod nanostructure of WO3 have shown better effectiveness in MB removal than the beads containing WO3 in spherical form. The maximum degradation efficiency was found to be 98% for WO3 nanorods structure embedded beads, while the maximum removal of WO3 nanospheres structure embedded beads was 91%. The cycling-ability and reuse results recommend both prepared structures to be used as effective tools for treating MB dye-contaminated wastewaters. The results show that the novel SA/PVP/WO3 nanocomposite beads are eco-friendly nanocomposite materials that can be applied as photocatalysts for the degradation of cationic dyes in contaminated water.

12.
Materials (Basel) ; 13(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224957

ABSTRACT

The presence of pharmaceutical residues in aquatic environments represents a risk for the equilibrium of the ecosystem and may seriously affect human safety itself in the long term. To address this issue, we have synthesized functional materials based on highly-reduced graphene oxide (HRGO), sulfonated graphene (SG), and magnetic sulfonated graphene (MSG). The method of synthesis adopted is simple and inexpensive and makes use of plastic bottle waste as the raw material. We have tested the fabricated materials for their adsorption efficiency against two model antibiotics in aqueous solutions, namely Garamycin and Ampicillin. Our tests involved the optimization of different experimental parameters of the adsorption process, such as starting antibiotic concentration, amount of adsorbent, and time. Finally, we characterized the effect of the antibiotic adsorption process on common living organisms, namely Escherichia coli DH5α (E. coli DH5α) bacteria. The results obtained demonstrate the efficiency of the method in addressing the issue of the emergence of antibiotic-resistant bacteria, which will help in preventing changes in the ecosystem.

13.
Chemosphere ; 239: 124728, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499314

ABSTRACT

Numerous of pollutants threaten our planet, for instance plastic wastes causes a huge potential risk on the environment in addition to many of emergened pollutants as pharmaceutical residue in aquatic environments which affecting ecological balance and in-turn affecting human health. Accordingly, this research proposed an innovative facile, one-step synthesis of functionalized magnetic fullerene nanocomposite (FMFN) via catalytic thermal decomposition of sustainable poly (ethylene terephthalate) bottle wastes as feedstock and ferrocene as a catalyst and precursor of magnetite. Growth mechanism of FMFN was discussed and batch experiments were achieved to examine its adsorption efficiency in relation to Ciprofloxacin antibiotic. Different adsorption parameters including time, initial Ciprofloxacin concentration, and solution temperature were investigated and optimized using Response Surface Methodology (RSM) model. In addition, a study on the antibiotic adsorption process impact on the organisms of an ecosystem was conducted using E. coli DH5α, and results validated method's efficiency in overcoming problem of appearance of antibiotic-resistant microbes.


Subject(s)
Ciprofloxacin/isolation & purification , Fullerenes/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Ciprofloxacin/chemistry , Ecosystem , Escherichia coli , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Models, Statistical , Plastics , Polyethylene Terephthalates/chemistry , Positron-Emission Tomography , Recycling , Temperature , Water Pollutants, Chemical/chemistry , Water Purification/methods , Water Purification/statistics & numerical data
14.
Phys Chem Chem Phys ; 21(25): 13611-13622, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31187824

ABSTRACT

The present research focuses on providing a novel facile, cost-effective and eco-friendly method for the mass production of N-doped graphene-like nanosheets (NGLs), in order to industrially benefit the exploitation of N-doped graphene in electronics, which will lead to the remarkable prosperity of graphene-based nanoelectronics. NGLs have been synthesized through a one-pot single-step process involving hydrolysis/hydrothermal treatment of glucose under mild conditions, using cetyltrimethylammonium bromide (CTAB) and ammonia solution (NH4OH) as the structure-directing agents. NGLs of high yield (65 wt%) and fascinating structural features, including low oxidation level, good crystalline structural order, and large laterally sized and well-exfoliated nanosheets, have been produced. The growth mechanism has been deeply investigated. The impressive chemical nature of CTAB has a synergistic effect in controlling the NGL structure. The cationic head of CTAB and anionic OH- ions resulting from NH4OH ionization have formed a passivating layer that played a profound role in hindering the NGL agglomeration and allowing the NGLs to grow into large lateral dimensions. Meanwhile, the polar (mainly H-bonding) and apolar (hydrophobic) interfacial interactions between the passivating layer and the graphitic network can be mainly considered responsible for the mild disturbed structural order inside the sp2 crystals. On the other hand, the excessive decomposition of CTAB that is also accompanied by fair ammonia decomposition during the hydrothermal treatment resulted in plenty of hydrogen and nitrogen gases in the atmosphere. The nitrogen gas N-doped the graphitic structure and the hydrogen gas effectively deoxygenated it. Furthermore, the high evolution rate of gases throughout the synthesis system contributed to the obstruction of NGL agglomeration. These results emphasize the high yield and good quality of the synthesized NGLs, which makes such a strategy promising in trust acquisition for investors in industrial production of N-doped graphene.

15.
Sci Rep ; 9(1): 1129, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30718552

ABSTRACT

3D sponge nitrogen doped graphene (NG) was prepared economically from waste polyethylene-terephthalate (PET) bottles mixed with urea at different temperatures using green approach via a novel one-step method. The effect of temperature and the amount of urea on the formation of NG was investigated. Cyclic voltammetry and impedance spectroscopy measurements, revealed that nitrogen fixation, which affects the structure and morphology of prepared materials improve the charge propagation and ion diffusion. The prepared materials show outstanding performance as a supercapacitor electrode material, with the specific capacitance going up to 405 F g-1 at 1 A g-1. An energy density of 68.1 W h kg-1 and a high maximum power density of 558.5 W kg-1 in 6 M KOH electrolytes were recorded for the optimum sample. The NG samples showed an appropriate cyclic stability with capacitance retention of 87.7% after 5000 cycles at 4 A g-1 with high charge/discharge duration. Thus, the prepared NG herein is considered to be promising, cheap material used in energy storage applications and the method used is cost-effective and environmentally friendly method for mass production of NG in addition to opening up opportunities to process waste materials for a wide range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...