Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19892, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963976

ABSTRACT

Concrete is a cost-effective construction material widely used in various building infrastructure projects. High-performance concrete, characterized by strength and durability, is crucial for structures that must withstand heavy loads and extreme weather conditions. Accurate prediction of concrete strength under different mixtures and loading conditions is essential for optimizing performance, reducing costs, and enhancing safety. Recent advancements in machine learning offer solutions to challenges in structural engineering, including concrete strength prediction. This paper evaluated the performance of eight popular machine learning models, encompassing regression methods such as Linear, Ridge, and LASSO, as well as tree-based models like Decision Trees, Random Forests, XGBoost, SVM, and ANN. The assessment was conducted using a standard dataset comprising 1030 concrete samples. Our experimental results demonstrated that ensemble learning techniques, notably XGBoost, outperformed other algorithms with an R-Square (R2) of 0.91 and a Root Mean Squared Error (RMSE) of 4.37. Additionally, we employed the SHAP (SHapley Additive exPlanations) technique to analyze the XGBoost model, providing civil engineers with insights to make informed decisions regarding concrete mix design and construction practices.

2.
Sci Rep ; 13(1): 4009, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899122

ABSTRACT

Car congestion is a pressing issue for everyone on the planet. Car congestion can be caused by accidents, traffic lights, rapid accelerations, deceleration, and hesitation of drivers, as well as a small low-carrying capacity road without bridges. Increasing road width and constructing roundabouts and bridges are solutions to car congestion, but the cost is significant. TLR (traffic light recognition) reduces accidents and traffic congestion caused by traffic lights (TLs). Image processing with convolutional neural network (CNN) lakes dealing with harsh weather. A semi-automatic annotation for traffic light detection employs a global navigation satellite system, raising the cost of automobiles. Data was not collected in harsh conditions, and tracking was not supported. Integrated channel feature tracking (ICFT) combines detection and tracking, but it does not support sharing information with neighbors. This study used vehicular ad-hoc networks (VANETs) for VANET traffic light recognition (VTLR). Information exchange as well as monitoring of the TL status, time remaining before a change, and recommended speeds are supported. Based on testing, it has been determined that VTLR performs better than semi-automatic annotation, image processing with CNN, and ICFT in terms of delay, success ratio, and the number of detections per second.

3.
PLoS One ; 16(11): e0259060, 2021.
Article in English | MEDLINE | ID: mdl-34793487

ABSTRACT

Vehicular ad-hoc networks (VANETs) address a steadily expanding demand, particularly for public emergency applications. Real-time localization of destination vehicles is important for determining the route to deliver messages. Existing location administration services in VANETs are classified as flooding-based, flat-based, and geographic-based location services. Existing localization techniques suffer from network disconnection and overloading because of 5G VANET topology changes. 5G VANETs have low delay and support time-sensitive applications. A traffic light-inspired location service (TLILS) is proposed to manage localization inspired by traffic lights. The proposed optimized localization service uses roadside units (RSUs) as location servers. RSUs with the maximum traffic weight metrics were chosen. Traffic weight metrics are based on speed of vehicles, connection time and density of neighboring vehicles. The proposed TLILS outperforms both Name-ID Hybrid Routing (NIHR) and Zoom-Out Geographic Location Service (ZGLS) for packet delivery ratio (PDR) and delay. TLILSs guarantee the highest PDR (0.96) and the shortest end-to-end delay (0.001 s) over NIHR and ZGLS.


Subject(s)
Automobile Driving/standards , Computer Communication Networks , Transportation/standards , Wireless Technology , Accidents, Traffic/prevention & control , Algorithms , Artificial Intelligence , Humans , Motor Vehicles/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...