Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1182-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944209

ABSTRACT

The crystal structures of BB2672 and SPO0826 were determined to resolutions of 1.7 and 2.1 Šby single-wavelength anomalous dispersion and multiple-wavelength anomalous dispersion, respectively, using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). These proteins are the first structural representatives of the PF06684 (DUF1185) Pfam family. Structural analysis revealed that both structures adopt a variant of the Bacillus chorismate mutase fold (BCM). The biological unit of both proteins is a hexamer and analysis of homologs indicates that the oligomer interface residues are highly conserved. The conformation of the critical regions for oligomerization appears to be dependent on pH or salt concentration, suggesting that this protein might be subject to environmental regulation. Structural similarities to BCM and genome-context analysis suggest a function in amino-acid synthesis.


Subject(s)
Amino Acids/metabolism , Bordetella bronchiseptica/enzymology , Chorismate Mutase/chemistry , Protein Folding , Rhodobacteraceae/enzymology , Amino Acid Sequence , Bacillus/enzymology , Chorismate Mutase/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Structural Homology, Protein
2.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1198-204, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944211

ABSTRACT

The crystal structure of Jann_2411 from Jannaschia sp. strain CCS1, a member of the Pfam PF07336 family classified as a domain of unknown function (DUF1470), was solved to a resolution of 1.45 Šby multiple-wavelength anomalous dispersion (MAD). This protein is the first structural representative of the DUF1470 Pfam family. Structural analysis revealed a two-domain organization, with the N-terminal domain presenting a new fold called the ABATE domain that may bind an as yet unknown ligand. The C-terminal domain forms a treble-clef zinc finger that is likely to be involved in DNA binding. Analysis of the Jann_2411 protein and the broader ABATE-domain family suggests a role as stress-induced transcriptional regulators.


Subject(s)
Bacterial Proteins/chemistry , Rhodobacteraceae/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , Zinc Fingers
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1211-7, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944213

ABSTRACT

The crystal structure of PA1994 from Pseudomonas aeruginosa, a member of the Pfam PF06475 family classified as a domain of unknown function (DUF1089), reveals a novel fold comprising a 15-stranded ß-sheet wrapped around a single α-helix that assembles into a tight dimeric arrangement. The remote structural similarity to lipoprotein localization factors, in addition to the presence of an acidic pocket that is conserved in DUF1089 homologs, phospholipid-binding and sugar-binding proteins, indicate a role for PA1994 and the DUF1089 family in glycolipid metabolism. Genome-context analysis lends further support to the involvement of this family of proteins in glycolipid metabolism and indicates possible activation of DUF1089 homologs under conditions of bacterial cell-wall stress or host-pathogen interactions.


Subject(s)
Bacterial Proteins/chemistry , Glycolipids/metabolism , Protein Folding , Pseudomonas aeruginosa/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Genome, Bacterial , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1347-53, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944231

ABSTRACT

In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Šresolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006), Proteins, 65, 1046-1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Xanthomonas campestris/chemistry , Zinc Acetate/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Interaction Domains and Motifs , Sequence Alignment , Structural Homology, Protein , Xanthomonas campestris/metabolism , Zinc Acetate/metabolism
5.
J Mol Biol ; 390(4): 686-98, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19450606

ABSTRACT

Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity.


Subject(s)
Bacterial Proteins/chemistry , Caulobacter crescentus/metabolism , Histidine/metabolism , Models, Molecular , Phosphotransferases/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Crystallography, X-Ray , Molecular Sequence Data , Phosphorylation , Phosphotransferases/metabolism , Protein Conformation
6.
Structure ; 17(2): 303-13, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19217401

ABSTRACT

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Anabaena variabilis/chemistry , Anabaena variabilis/enzymology , Catalytic Domain , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/physiology , Endopeptidases/physiology , Models, Biological , Models, Molecular , Molecular Sequence Data , Nostoc/chemistry , Nostoc/enzymology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Substrate Specificity , src Homology Domains
8.
Proteins ; 75(2): 296-307, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19173316

ABSTRACT

ECX21941 represents a very large family (over 600 members) of novel, ocean metagenome-specific proteins identified by clustering of the dataset from the Global Ocean Sampling expedition. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The ECX21941 protein assembles as a homopentamer in solution and in the crystal structure when expressed in Escherichia coli and represents the first pentameric structure for this Sm/LSm family of proteins, although the actual oligomeric form in vivo is currently not known. The genomic neighborhood analysis of ECX21941 and its homologs combined with sequence similarity searches suggest a cyanophage origin for this protein. The specific functions of members of this family are unknown, but our structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing.


Subject(s)
Bacteriophages/chemistry , RNA-Binding Proteins/chemistry , Amino Acid Sequence , Bacteriophages/genetics , Crystallography, X-Ray , Databases, Genetic , Escherichia coli/genetics , Molecular Sequence Data , Protein Conformation , Protein Multimerization , RNA-Binding Proteins/genetics , Sequence Homology, Amino Acid
10.
Proteins ; 69(2): 234-43, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17654547

ABSTRACT

TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Coloring Agents/metabolism , Heme/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Peroxidases/chemistry , Peroxidases/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Molecular Sequence Data , Protein Binding , Shewanella/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...