ABSTRACT
This study investigated the effects of varying environmental Ca2+ concentrations on the influx of Ca2+ to the testis, testicular morphology, and liver enzymes in the zebrafish. Adult zebrafish (Danio rerio) were held in water containing low (0.02 mM), control (0. 7 mM) or high (2 mM) Ca2+ concentrations for 12 h. Testes were then incubated in vitro with 0.1 µCi/mL 45Ca2+ to measure Ca2+ influx at 30 and 60 min and qualitative and quantitative testicular histological analyses were conducted. In addition, activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT), enzymes that indicate tissue damage, were evaluated in the liver. The testes from zebrafish exposed in vivo to low (0.02 mM) and high (2 mM) Ca2+ content water had a higher Ca2+ influx than the control group after 30 min of incubation, and at 60 min (high Ca2+ group only). There were morphological changes in the testes from the low and high Ca2+ groups including spermatozoa distributed in dense agglomerates and apoptotic cells. Furthermore, zebrafish exposed to high Ca2+ containing water had an increased density of haploid cells (spermatids and spermatozoa). In addition, both low and high Ca2+ water affected liver function by increasing ALT and GGT activities. Collectively, these studies show that alterations in calcium homeostasis in the testis, stimulation of the spermatogenic wave and hepatic injury were rapid responses to changes in the concentration of Ca2+ in the water.
Subject(s)
Testis , Zebrafish , Animals , Calcium , Liver , Male , Spermatogenesis , Water , Zebrafish/physiologyABSTRACT
Social insects are in mutualism with microorganisms, contributing to their resistance against infectious diseases. The fungus Pseudallescheria boydii SNB-CN85 isolated from termites produces ovalicin derivatives resulting from the esterification of the less hindered site of the ovalicin epoxide by long-chain fatty acids. Their structures were elucidated using spectroscopic analysis and semisynthesis from ovalicin. For ovalicin, these compounds displayed antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei, with IC50 values of 19.8 and 1.1 µM, respectively, for the most active compound, i.e., ovalicin linoleate. In parallel, metabolomic profiling of a collection of P. boydii strains associated with termites made it possible to highlight this class of compounds together with tyroscherin derivatives in all strains. Finally, the complete genome of P. boydii strains was obtained by sequencing, and the cluster of potential ovalicin and ovalicin biosynthesis genes was annotated. Through these metabolomic and genomic analyses, a new ovalicin derivative named boyden C, in which the 6-membered ring of ovalicin was opened by oxidative cleavage, was isolated and structurally characterized.