Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38463496

ABSTRACT

An understanding how neurological disorders lead to mechanical dysfunction of the esophagus requires knowledge of the neural circuit of the enteric nervous system. Historically, this has been elusive. Here, we present an empirically guided neural circuit for the esophagus. It has a chain of unidirectionally coupled relaxation oscillators, receiving excitatory signals from stretch receptors along the esophagus. The resulting neuromechanical model reveals complex patterns and behaviors that emerge from interacting components in the system. A wide variety of clinically observed normal and abnormal esophageal responses to distension are successfully predicted. Specifically, repetitive antegrade contractions (RACs) are conclusively shown to emerge from the coupled neuromechanical dynamics in response to sustained volumetric distension. Normal RACs are shown to have a robust balance between excitatory and inhibitory neuronal populations, and the mechanical input through stretch receptors. When this balance is affected, contraction patterns akin to motility disorders are observed. For example, clinically observed repetitive retrograde contractions emerge due to a hyper stretch sensitive wall. Such neuromechanical insights could be crucial to eventually develop targeted pharmacological interventions.

2.
J Biomech Eng ; 146(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37994843

ABSTRACT

Functional luminal imaging probe (FLIP) is used to measure cross-sectional area (CSA) and pressure at sphincters. It consists of a catheter surrounded by a fluid filled cylindrical bag, closed on both ends. Plotting the pressure-CSA hysteresis of a sphincter during a contraction cycle, which is available through FLIP testing, offers information on its functionality, and can provide diagnostic insights. However, limited work has been done to explain the mechanics of these pressure-CSA loops. This work presents a consolidated picture of pressure-CSA loops of different sphincters. Clinical data reveal that although sphincters have a similar purpose (controlling the flow of liquids and solids by opening and closing), two different pressure-CSA loop patterns emerge: negative slope loop (NSL) and positive slope loop (PSL). We show that the loop type is the result of an interplay between (or lack thereof) two mechanical modes: (i) neurogenic mediated relaxation of the sphincter muscle or pulling applied by external forces, and (ii) muscle contraction proximal to the sphincter which causes mechanical distention. We conclude that sphincters which only function through mechanism (i) exhibition NSL whereas sphincters which open as a result of both (i) and (ii) display a PSL. This work provides a fundamental mechanical understanding of human sphincters. This can be used to identify normal and abnormal phenotypes for the different sphincters and help in creating physiomarkers based on work calculation.


Subject(s)
Muscle Contraction , Muscle, Smooth , Humans , Manometry/methods , Muscle Contraction/physiology , Muscle, Smooth/physiology
3.
Nat Biomed Eng ; 7(12): 1614-1626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38082182

ABSTRACT

The diagnosis of aneurysms is informed by empirically tracking their size and growth rate. Here, by analysing the growth of aortic aneurysms from first principles via linear stability analysis of flow through an elastic blood vessel, we show that abnormal aortic dilatation is associated with a transition from stable flow to unstable aortic fluttering. This transition to instability can be described by the critical threshold for a dimensionless number that depends on blood pressure, the size of the aorta, and the shear stress and stiffness of the aortic wall. By analysing data from four-dimensional flow magnetic resonance imaging for 117 patients who had undergone cardiothoracic imaging and for 100 healthy volunteers, we show that the dimensionless number is a physiomarker for the growth of thoracic ascending aortic aneurysms and that it can be used to accurately discriminate abnormal versus natural growth. Further characterization of the transition to blood-wall fluttering instability may aid the understanding of the mechanisms underlying aneurysm progression in patients.


Subject(s)
Aortic Aneurysm, Thoracic , Humans , Aortic Aneurysm, Thoracic/diagnostic imaging , Blood Pressure
4.
Neurogastroenterol Motil ; 35(12): e14692, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37845833

ABSTRACT

BACKGROUND AND AIMS: The distal contractile integral (DCI) quantifies the contractile vigor of primary peristalsis on high-resolution manometry (HRM), whereas no such metric exists for secondary peristalsis on functional lumen imaging probe (FLIP) panometry. This study aimed to evaluate novel FLIP metrics of contraction power and displaced volume in asymptomatic controls and a patient cohort. METHODS: Thirty-five asymptomatic controls and adult patients (with normal esophagogastric junction outflow/opening and without spasm) who completed HRM and FLIP panometry were included. The patient group also completed timed barium esophagram (TBE). Contraction power (estimate of esophageal work over time) and displaced volume (estimate of contraction-associated fluid flow) were computed from FLIP. HRM was analyzed per Chicago Classification v4.0. KEY RESULTS: In controls, median (5th-95th percentile) contraction power was 27 mW (10-44) and displaced volume was 43 mL (17-66). 95 patients were included: 72% with normal motility on HRM, 17% with ineffective esophageal motility (IEM), and 12% with absent contractility. Among patients, DCI was significantly correlated with both contraction power (rho = 0.499) and displaced volume (rho = 0.342); p values < 0.001. Both contraction power and displaced volume were greater in patients with normal motility versus IEM or absent contractility, complete versus incomplete bolus transit, and normal versus abnormal retention on TBE; p values < 0.02. CONCLUSIONS: FLIP panometry metrics of contraction power and displaced volume appeared to effectively quantify peristaltic vigor. These novel metrics may enhance evaluation of esophageal motility with FLIP panometry and provide a reliable surrogate to DCI on HRM.


Subject(s)
Esophageal Motility Disorders , Peristalsis , Adult , Humans , Esophagus/diagnostic imaging , Esophagogastric Junction/diagnostic imaging , Muscle Contraction , Manometry/methods , Esophageal Motility Disorders/diagnosis
5.
Biomech Model Mechanobiol ; 22(3): 905-923, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36752983

ABSTRACT

The esophagogastric junction (EGJ) is located at the distal end of the esophagus and acts as a valve allowing swallowed food to enter the stomach and preventing acid reflux. Irregular weakening or stiffening of the EGJ muscles results in changes to its opening and closing patterns which can progress into esophageal disorders. Therefore, understanding the physics of the opening and closing cycle of the EGJ can provide mechanistic insights into its function and can help identify the underlying conditions that cause its dysfunction. Using clinical functional lumen imaging probe (FLIP) data, we plotted the pressure-cross-sectional area loops at the EGJ location and distinguished two major loop types-a pressure dominant loop and a tone dominant loop. In this study, we aimed to identify the key characteristics that define each loop type and determine what causes the inversion from one loop to another. To do so, the clinical observations are reproduced using 1D simulations of flow inside a FLIP device located in the esophagus, and the work done by the EGJ wall over time is calculated. This work is decomposed into active and passive components, which reveal the competing mechanisms that dictate the loop type. These mechanisms are esophageal stiffness, fluid viscosity, and the EGJ relaxation pattern.


Subject(s)
Esophagogastric Junction , Gastroesophageal Reflux , Humans , Esophagogastric Junction/physiology , Manometry/methods
6.
Biomech Model Mechanobiol ; 22(1): 23-41, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36352039

ABSTRACT

A FLIP device gives cross-sectional area along the length of the esophagus and one pressure measurement, both as a function of time. Deducing mechanical properties of the esophagus including wall material properties, contraction strength, and wall relaxation from these data are a challenging inverse problem. Knowing mechanical properties can change how clinical decisions are made because of its potential for in-vivo mechanistic insights. To obtain such information, we conducted a parametric study to identify peristaltic regimes by using a 1D model of peristaltic flow through an elastic tube closed on both ends and also applied it to interpret clinical data. The results gave insightful information about the effect of tube stiffness, fluid/bolus density and contraction strength on the resulting esophagus shape through quantitive representations of the peristaltic regimes. Our analysis also revealed the mechanics of the opening of the contraction area as a function of bolus flow resistance. Lastly, we concluded that peristaltic driven flow displays three modes of peristaltic geometries, but all physiologically relevant flows fall into two peristaltic regimes characterized by a tight contraction.


Subject(s)
Body Fluids , Deglutition , Deglutition/physiology , Muscle Contraction/physiology , Esophagus/physiology , Peristalsis/physiology
7.
Artif Intell Med ; 134: 102435, 2022 12.
Article in English | MEDLINE | ID: mdl-36462900

ABSTRACT

Esophageal disorders are related to the mechanical properties and function of the esophageal wall. Therefore, to understand the underlying fundamental mechanisms behind various esophageal disorders, it is crucial to map mechanical behavior of the esophageal wall in terms of mechanics-based parameters corresponding to altered bolus transit and increased intrabolus pressure. We present a hybrid framework that combines fluid mechanics and machine learning to identify the underlying physics of various esophageal disorders (motility disorders, eosinophilic esophagitis, reflux disease, scleroderma esophagus) and maps them onto a parameter space which we call the virtual disease landscape (VDL). A one-dimensional inverse model processes the output from an esophageal diagnostic device called the functional lumen imaging probe (FLIP) to estimate the mechanical "health" of the esophagus by predicting a set of mechanics-based parameters such as esophageal wall stiffness, muscle contraction pattern and active relaxation of esophageal wall. The mechanics-based parameters were then used to train a neural network that consists of a variational autoencoder that generated a latent space and a side network that predicted mechanical work metrics for estimating esophagogastric junction motility. The latent vectors along with a set of discrete mechanics-based parameters define the VDL and formed clusters corresponding to specific esophageal disorders. The VDL not only distinguishes among disorders but also displayed disease progression over time. Finally, we demonstrated the clinical applicability of this framework for estimating the effectiveness of a treatment and tracking patients' condition after a treatment.


Subject(s)
Machine Learning , Neural Networks, Computer , Humans , Disease Progression
8.
Front Physiol ; 13: 1066351, 2022.
Article in English | MEDLINE | ID: mdl-36699676

ABSTRACT

Introduction: Plotting the pressure-cross-sectional area (P-CSA) hysteresis loops within the esophagus during a contraction cycle can provide mechanistic insights into esophageal motor function. Pressure and cross-sectional area during secondary peristalsis can be obtained from the functional lumen imaging probe (FLIP). The pressure-cross-sectional area plots at a location within the esophageal body (but away from the sphincter) reveal a horizontal loop shape. The horizontal loop shape has phases that appear similar to those in cardiovascular analyses, whichinclude isometric and isotonic contractions followed by isometric and isotonic relaxations. The aim of this study is to explain the various phases of the pressurecross-sectional area hysteresis loops within the esophageal body. Materials and Methods: We simulate flow inside a FLIP device placed inside the esophagus lumen. We focus on three scenarios: long functional lumen imaging probe bag placed insidethe esophagus but not passing through the lower esophageal sphincter, long functional lumen imaging probe bag that crosses the lower esophageal sphincter, and a short functional lumen imaging probe bag placed in the esophagus body that does not pass through the lower esophageal sphincter. Results and Discussion: Horizontal P-CSA area loop pattern is robust and is reproduced in all three cases with only small differences. The results indicate that the horizontal loop pattern is primarily a product of mechanical conditions rather than any inherently different function of the muscle itself. Thus, the distinct phases of the loop can be explained solely based on mechanics.

SELECTION OF CITATIONS
SEARCH DETAIL
...