Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172947, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703837

ABSTRACT

This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.


Subject(s)
Carps , Dexamethasone , Oxidative Stress , Water Pollutants, Chemical , Animals , Carps/metabolism , Carps/physiology , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Lipid Peroxidation/drug effects , Kidney/metabolism , Kidney/drug effects
2.
Sci Total Environ ; 933: 173179, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750761

ABSTRACT

Anticipating a global increase in cardiovascular diseases, there is an expected surge in the use of angiotensin-converting enzyme inhibitors, notably captopril (CAP). This heightened usage raises significant environmental apprehensions, mainly due to limited knowledge regarding CAP's toxic effects on aquatic species. In response to these concerns, the current study aimed to tackle this knowledge gap by evaluating the potential influence of nominal concentrations of CAP (0.2-2000 µg/L) on the embryonic development of Danio rerio. The findings revealed that CAP at all concentrations, even at concentrations considered environmentally significant (0.2 and 2 µg/L), induced various malformations in the embryos, ultimately leading to their mortality. Main malformations included pericardial edema, craniofacial malformation, scoliosis, tail deformation, and yolk sac deformation. In addition, CAP significantly altered the antioxidant activity of superoxide dismutase and catalase across all concentrations. Simultaneously, it elevated lipid peroxidation levels, hydroperoxides, and carbonylic proteins in the embryos, eliciting a substantial oxidative stress response. Likewise, CAP, at all concentrations, exerted significant modulatory effects on the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3), organogenesis (tbx2a, tbx2b, and irx3b), and ion exchange (slc12a1 and kcnj1) in Danio rerio embryos. Both augmentation and reduction in the expression levels of these genes characterized this modulation. The Pearson correlation analysis indicated a close association between oxidative damage biomarkers and the expression patterns of all examined genes with the elevated incidence of malformations and mortality in the embryos. In summary, it can be deduced that CAP poses a threat to aquatic species. Nevertheless, further research is imperative to enhance our understanding of the environmental implications of this pharmaceutical compound.


Subject(s)
Captopril , Embryo, Nonmammalian , Embryonic Development , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Embryonic Development/drug effects , Captopril/toxicity , Embryo, Nonmammalian/drug effects , Oxidative Stress/drug effects , Angiotensin-Converting Enzyme Inhibitors/toxicity
3.
Environ Pollut ; 349: 123997, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38636837

ABSTRACT

Current and thorough information on the ecotoxicological consequences of pharmaceuticals is accessible globally. However, there remains a substantial gap in knowledge concerning the potentially toxic effects of COVID-19 used drugs, individually and combined, on aquatic organisms. Given the factors above, our investigation assumes pivotal importance in elucidating whether or not paracetamol, dexamethasone, metformin, and their tertiary mixtures might prompt histological impairment, oxidative stress, and apoptosis in the liver of zebrafish. The findings indicated that all treatments, except paracetamol, augmented the antioxidant activity of superoxide dismutase (SOD) and catalase (CAD), along with elevating the levels of oxidative biomarkers such as lipid peroxidation (LPX), hydroperoxides (HPC), and protein carbonyl content (PCC). Paracetamol prompted a reduction in the activities SOD and CAT and exhibited the most pronounced toxic response when compared to the other treatments. The gene expression patterns paralleled those of oxidative stress, with all treatments demonstrating overexpression of bax, bcl2, and p53. The above suggested a probable apoptotic response in the liver of the fish. Nevertheless, our histological examinations revealed that none of the treatments induced an apoptotic or inflammatory response in the hepatocytes. Instead, the observed tissue alterations encompassed leukocyte infiltration, sinusoidal dilatation, pyknosis, fatty degeneration, diffuse congestion, and vacuolization. In summary, the hepatic toxicity elicited by COVID-19 drugs in zebrafish was less pronounced than anticipated. This attenuation could be attributed to metformin's antioxidant and hormetic effects.


Subject(s)
Acetaminophen , Liver , Metformin , Oxidative Stress , Zebrafish , Animals , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Acetaminophen/toxicity , Metformin/pharmacology , Dexamethasone/pharmacology , COVID-19 , Apoptosis/drug effects , COVID-19 Drug Treatment , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Catalase/metabolism , Water Pollutants, Chemical/toxicity
4.
Sci Total Environ ; 929: 172757, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670364

ABSTRACT

To mitigate the environmental impact of microplastics (MPs), the scientific community has innovated sustainable and biodegradable polymers as viable alternatives to traditional plastics. Chitosan, the deacetylated form of chitin, stands as one of the most thoroughly investigated biopolymers and has garnered significant interest due to its versatile applications in both medical and cosmetic fields. Nevertheless, there is still a knowledge gap regarding the impact that chitosan biopolymer films (CBPF) may generate in aquatic organisms. In light of the foregoing, this study aimed to assess and compare the potential effects of CBPF on the gastrointestinal tract, gills, brain, and liver of Danio rerio against those induced by MPs. The findings revealed that both CBPF and MPs induced changes in the levels of oxidative stress biomarkers across all organs. However, it is essential to note that our star plots illustrate a tendency for CBPF to activate antioxidant enzymes and for MPs to produce oxidative damage. Regarding gene expression, our findings indicate that MPs led to an up-regulation in the expression of genes associated with apoptotic response (p53, casp3, cas9, bax, and bcl2) in all fish organs. Meanwhile, CBPF produced the same effect in genes related to antioxidant response (nrf1 and nrf2). Overall, our histological observations substantiated these effects, revealing the presence of plastic particles and tissue alterations in the gills and gastrointestinal tract of fish subjected to MPs. From these results, it can be concluded that CBPF does not represent a risk to fish after long exposure.


Subject(s)
Chitosan , Microplastics , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Chitosan/chemistry , Oxidative Stress/drug effects , Polystyrenes/toxicity , Biopolymers , Ecotoxicology
SELECTION OF CITATIONS
SEARCH DETAIL