Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38302457

ABSTRACT

Cypin (cytosolic postsynaptic density protein 95 interactor) is the primary guanine deaminase in the central nervous system (CNS), promoting the metabolism of guanine to xanthine, an important reaction in the purine salvage pathway. Activation of the purine salvage pathway leads to the production of uric acid (UA). UA has paradoxical effects, specifically in the context of CNS injury as it confers neuroprotection, but it also promotes pain. Since neuropathic pain is a comorbidity associated with spinal cord injury (SCI), we postulated that small molecule cypin inhibitor B9 treatment could attenuate SCI-induced neuropathic pain, potentially by interfering with UA production. However, we also considered that this treatment could hinder the neuroprotective effects of UA and, in doing so, exacerbate SCI outcomes. To address our hypothesis, we induced a moderate midthoracic contusion SCI in female mice and assessed whether transient intrathecal administration of B9, starting at 1 d postinjury (dpi) until 7 dpi, attenuates mechanical pain in hindlimbs at 3 weeks pi. We also evaluated the effects of B9 on the spontaneous recovery of locomotor function. We found that B9 alleviates mechanical pain but does not affect locomotor function. Importantly, B9 does not exacerbate lesion volume at the epicenter. In accordance with these findings, B9 does not aggravate glutamate-induced excitotoxic death of SC neurons in vitro. Moreover, SCI-induced increased astrocyte reactivity at the glial scar is not altered by B9 treatment. Our data suggest that B9 treatment reduces mechanical pain without exerting major detrimental effects following SCI.


Subject(s)
Neuralgia , Spinal Cord Injuries , Mice , Female , Animals , Hyperalgesia/metabolism , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neurons/metabolism , Neuralgia/drug therapy , Neuralgia/etiology , Neuralgia/metabolism , Purines , Spinal Cord/metabolism
2.
Neurosci Lett ; 820: 137607, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38141752

ABSTRACT

Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Animals , Diffusion Tensor Imaging/methods , Cervical Cord/injuries , Cervical Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging
3.
Neurotrauma Rep ; 3(1): 421-432, 2022.
Article in English | MEDLINE | ID: mdl-36337081

ABSTRACT

Afferent nociceptive activity in the reorganizing spinal cord after SCI influences supraspinal regions to establish pain. Clinical evidence of poor motor functional recovery in SCI patients with pain, led us to hypothesize that sensory-motor integration transforms into sensory-motor interference to manifest pain. This was tested by investigating supraspinal changes in a rat model of hemicontusion cervical SCI. Animals displayed ipsilateral forelimb motor dysfunction and pain, which persisted at 6 weeks after SCI. Using resting state fMRI at 8 weeks after SCI, RSFC across 14 ROIs involved in nociception, indicated lateral differences with a relatively weaker right-right connectivity (deafferented-contralateral) compared to left-left (unaffected-ipsilateral). However, the sensory (S1) and motor (M1/M2) networks showed greater RSFC using right hemisphere ROI seeds when compared to left. Voxel seeds from the somatosensory forelimb (S1FL) and M1/M2 representations reproduced the SCI-induced sensory and motor RSFC enhancements observed using the ROI seeds. Larger local connectivity occurred in the right sensory and motor networks amidst a decreasing overall local connectivity. This maladaptive reorganization of the right (deafferented) hemisphere localized the sensory component of pain emerging from the ipsilateral forepaw. A significant expansion of the sensory and motor network s overlap occurred globally after SCI when compared to sham, supporting the hypothesis that sensory and motor interference manifests pain. Voxel-seed based analysis revealed greater sensory and motor network overlap in the left hemisphere when compared to the right. This left predominance of the overlap suggested relatively larger pain processing in the unaffected hemisphere, when compared to the deafferented side.

4.
Brain Behav Immun ; 102: 163-178, 2022 05.
Article in English | MEDLINE | ID: mdl-35176442

ABSTRACT

Toll-like receptors (TLRs) are innate immune receptors that are expressed in immune cells as well as glia and neurons of the central and peripheral nervous systems. They are best known for their role in the host defense in response to pathogens and for the induction of inflammation in infectious and non-infectious diseases. In the central nervous system (CNS), TLRs modulate glial and neuronal functions as well as innate immunity and neuroinflammation under physiological or pathophysiological conditions. The majority of the studies on TLRs in CNS pathologies investigated their overall contribution without focusing on a particular cell type, or they analyzed TLRs in glia and infiltrating immune cells in the context of neuroinflammation and cellular activation. The role of neuronal TLRs in CNS diseases and injuries has received little attention and remains underappreciated. The primary goal of this review is to summarize findings demonstrating the pivotal and unique roles of neuronal TLRs in neuropathic pain, Alzheimer's disease, Parkinson's disease and CNS injuries. We discuss how the current findings warrant future investigations to better define the specific contributions of neuronal TLRs to these pathologies. We underline the paucity of information regarding the role of neuronal TLRs in other neurodegenerative, demyelinating, and psychiatric diseases. We draw attention to the importance of broadening research on neuronal TLRs in view of emerging evidence demonstrating their distinctive functional properties.


Subject(s)
Neuralgia , Trauma, Nervous System , Central Nervous System/metabolism , Humans , Immunity, Innate , Neuralgia/metabolism , Neurons/metabolism , Toll-Like Receptors/metabolism , Trauma, Nervous System/metabolism , Trauma, Nervous System/pathology
5.
J Neurotrauma ; 38(24): 3393-3405, 2021 12.
Article in English | MEDLINE | ID: mdl-34714150

ABSTRACT

Because the presence of pain impedes motor recovery in individuals with spinal cord injury (SCI), it is necessary to understand their supraspinal substrates in translational animal models. Using functional magnetic resonance imaging (fMRI) in a rat model of hemicontusion cervical SCI, supraspinal changes were mapped and correlated with sensorimotor behavioral outcomes. Female adult rats underwent sham or SCI using a 2.5 mm impactor and 150 kdyn force. SCI permanently impaired motor activity in only the ipsilesional forelimb along with thermal hyperalgesia at 5 and 6 weeks. Spinal MRI at 8 weeks after SCI showed ipsilateral T1 and T2 lesions with no discernable lesions across shams. fMRI mapping during electrical forepaw stimulation indicated SCI-induced sensorimotor reorganization with an expansion of the contralesional forelimb representation. Resting state fMRI-based functional connectivity density (FCD), a marker of regional neuronal hubs, increased or decreased across brain regions involved in nociception. FCD increases after SCI were in the primary and secondary somatosensory cortices (S1 and S2), anterior cingulate cortex (ACC), insula, and the pre-frontal cortex (PFC), and decreases were across the hippocampus, thalamus, hypothalamus, and amygdala in SCI. Resting state functional connectivity (RSFC) assessments from the FCD altered regions of interest indicated cortico-cortical RSFC increases and cortico-insular, cortico-thalamic, and cortico-hypothalamic RSFC decreases after SCI. Hippocampus, amygdala, and thalamus showed decreased RSFC with most cortical regions and between themselves except the hippocampus-amygdala network, which showed increased RSFC after SCI. Whereas select nociceptive region's intrinsic activity associated strongly with evoked pain behaviors after SCI (e.g., PFC, ACC, hippocampus, thalamus, hypothalamus, M1, and S1BF) other nociceptive regions had weaker associations (e.g., amygdala, insula, auditory cortex, S1FL, S1HL, S2, and M2), but differed significantly in their intrinsic activities between sham and SCI. The weaker associated nociceptive regions may possibly encode both the evoked and affective components of pain.


Subject(s)
Cervical Cord/injuries , Pain/etiology , Somatosensory Cortex/physiopathology , Spinal Cord Injuries/complications , Animals , Behavior, Animal , Disease Models, Animal , Female , Magnetic Resonance Imaging , Pain/physiopathology , Rats , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/psychology
6.
Brain Res ; 1758: 147291, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33516810

ABSTRACT

Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.


Subject(s)
Astrocytes/pathology , Neurodegenerative Diseases/pathology , Animals , Humans
7.
Front Neurol ; 12: 793745, 2021.
Article in English | MEDLINE | ID: mdl-34975739

ABSTRACT

Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.

8.
Brain Behav Immun ; 91: 740-755, 2021 01.
Article in English | MEDLINE | ID: mdl-33039660

ABSTRACT

Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.


Subject(s)
Astrocytes/metabolism , Neurodegenerative Diseases/physiopathology , Toll-Like Receptors/physiology , Animals , Astrocytes/physiology , Brain/metabolism , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System Diseases/immunology , Central Nervous System Infections/pathology , Encephalitis/immunology , Humans , Immunity, Innate/physiology , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Receptors, Pattern Recognition/immunology , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Toll-Like Receptors/metabolism
9.
Brain Connect ; 10(9): 479-489, 2020 11.
Article in English | MEDLINE | ID: mdl-32981350

ABSTRACT

Aim: Structural connectivity in the reorganizing spinal cord after injury dictates functional connectivity and hence the neurological outcome. As magnetic resonance imaging (MRI)-based structural parameters are mostly accessible across spinal cord injury (SCI) patients, we studied MRI-based spinal morphological changes and their relationship to neurological outcome in the rat model of cervical SCI. Introduction: Functional connectivity assessments on patients with SCI rely heavily on MRI-based approaches to investigate the complete neural axis (both spinal cord and brain). Hence, underlying MRI-based structural and morphometric changes in the reorganizing spinal cord and their relationship to neurological outcomes is crucial for meaningful interpretation of functional connectivity changes across the neural axis. Methods: Young adult rats, aged 1.5 months, underwent a precise mechanical impact hemicontusion incomplete cervical SCI at the C4/C5 level, after which sensorimotor behavioral assessments were tracked during the reorganization period of 1-6 weeks, followed by MRI of the cervical spinal cord at 8 weeks after SCI. Results: A significant ipsilesional forelimb motor debilitation was observed from 1 to 6 weeks after injury. Heat sensitivity testing (Hargreaves) showed ipsilesional forelimb hypersensitivity at 5 and 6 weeks after SCI. MRI of the cervical spine showed ipsilateral T1- and T2-weighted lesions across all SCI rats compared with no significant lesions in sham rats. Morphometric assessments of the lesional and nonlesional changes showed the diverse nature of their interindividual variability in the SCI receiving rats. While the various T1 and T2 MRI lesional volumes associated weakly or moderately with neurological outcome, the nonlesional spinal morphometric changes associated much more strongly. The results have important implications for interpreting functional MRI-based functional connectivity after SCI by providing vital underlying structural changes and their relative neurological impact. Impact statement Functional connectivity assessments on patients with SCI relies heavily upon MRI based approaches. Hence, underlying MRI based structural and morphometric changes in the reorganizing spinal cord and its relationship to neurological outcomes is vital for meaningful interpretation of functional connectivity changes across the complete neural axis (both spinal cord and the brain).


Subject(s)
Cervical Cord/diagnostic imaging , Cervical Cord/injuries , Psychomotor Performance/physiology , Spinal Cord Injuries/diagnostic imaging , Animals , Cervical Cord/physiopathology , Disease Models, Animal , Magnetic Resonance Imaging , Rats , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology
10.
J Neuroinflammation ; 17(1): 73, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32098620

ABSTRACT

BACKGROUND: The recruitment of immune system cells into the central nervous system (CNS) has a profound effect on the outcomes of injury and disease. Glia-derived chemoattractants, including chemokines, play a pivotal role in this process. In addition, cytokines and chemokines influence the phenotype of infiltrating immune cells. Depending on the stimuli present in the local milieu, infiltrating macrophages acquire the classically activated M1 or alternatively activated M2 phenotypes. The polarization of macrophages into detrimental M1 versus beneficial M2 phenotypes significantly influences CNS pathophysiology. Earlier studies indicated that a toll-like receptor 9 (TLR9) antagonist modulates astrocyte-derived cytokine and chemokine release. However, it is not known whether these molecular changes affect astrocyte-induced chemotaxis and polarization of macrophages. The present studies were undertaken to address these issues. METHODS: The chemotaxis and polarization of mouse peritoneal macrophages by spinal cord astrocytes were evaluated in a Transwell co-culture system. Arrays and ELISA were utilized to quantify chemokines in the conditioned medium (CM) of pure astrocyte cultures. Immunostaining for M1- and M2-specific markers characterized the macrophage phenotype. The percentage of M2 macrophages at the glial scar was determined by stereological approaches in mice sustaining a mid-thoracic spinal cord contusion injury (SCI) and intrathecally treated with oligodeoxynucleotide 2088 (ODN 2088), the TLR9 antagonist. Statistical analyses used two-tailed independent-sample t-test and one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. A p value < 0.05 was considered to be statistically significant. RESULTS: ODN 2088-treated astrocytes significantly increased the chemotaxis of peritoneal macrophages via release of chemokine (C-C motif) ligand 1 (CCL1). Vehicle-treated astrocytes polarized macrophages into the M2 phenotype and ODN 2088-treated astrocytes promoted further M2 polarization. Reduced CCL2 and CCL9 release by astrocytes in response to ODN 2088 facilitated the acquisition of the M2 phenotype, suggesting that CCL2 and CCL9 are negative regulators of M2 polarization. The percentage of M2 macrophages at the glial scar was higher in mice sustaining a SCI and receiving ODN 2088 treatment as compared to vehicle-treated injured controls. CONCLUSIONS: TLR9 antagonism could create a favorable environment during SCI by supporting M2 macrophage polarization and chemotaxis via modulation of astrocyte-to-macrophage signals.


Subject(s)
Astrocytes/metabolism , Chemotaxis, Leukocyte/physiology , Macrophage Activation/physiology , Spinal Cord Injuries/physiopathology , Toll-Like Receptor 9/antagonists & inhibitors , Animals , Female , Mice , Mice, Inbred C57BL , Spinal Cord Injuries/immunology , Spinal Cord Injuries/metabolism , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL