Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Zebrafish ; 20(6): 229-235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010808

ABSTRACT

The longevity of sperm in teleost such as zebrafish and medaka is short when isolated even in saline-balanced solution at a physiological temperature. In contrast, some internal fertilizers exhibit the long-term storage of sperm, >10 months, in the female reproductive tract. This evidence implies that sperm in teleost possesses the ability to survive for a long time under suitable conditions; however, these conditions are not well understood. In this study, we show that the sperm of zebrafish can survive and maintain fertility in L-15-based storage medium supplemented with bovine serum albumin, fetal bovine serum, glucose, and lactic acid for 28 days at room temperature. The fertilized embryos developed to normal fertile adults. This storage medium was effective in medaka sperm stored for 7 days at room temperature. These results suggest that sperm from external fertilizer zebrafish and medaka has the ability to survive for at least 4 and 1 week, respectively, in the body fluid-like medium at a physiological temperature. This sperm storage method allows researchers to ship sperm by low-cost methods and to investigate key factors for motility and fertile ability in those sperm.


Subject(s)
Oryzias , Semen Preservation , Male , Female , Animals , Zebrafish , Oryzias/physiology , Temperature , Semen , Spermatozoa/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Sperm Motility/physiology
2.
Development ; 150(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37272421

ABSTRACT

Oocytes develop in the germline cyst, a cellular organization in which germ cells are tightly interconnected and surrounded by somatic cells. The cyst produces oocytes for follicle formation and is a hub for essential processes in meiosis and oocyte differentiation. However, the formation and organization of the cyst, and their contribution to oocyte production in vertebrates remain unclear. Here, we provide tools for three-dimensional and functional in vivo analyses of the germline cyst in the zebrafish ovary. We describe the use of serial block-face scanning electron microscopy (SBF-SEM) to resolve the three-dimensional architecture of cells and organelles in the cyst at ultrastructural resolution. We present a deep learning-based pipeline for high-throughput quantitative analysis of three-dimensional confocal datasets of cysts in vivo. We provide a method for laser ablation of cellular components for manipulating cyst cells in ovaries. These methods will facilitate the investigation of the cyst cellular organization, expand the toolkit for the study of the zebrafish ovary, and advance our understanding of female developmental reproduction. They could also be further applied to the investigation of other developmental systems.


Subject(s)
Oogenesis , Zebrafish , Animals , Female , Oocytes , Ovary , Germ Cells/ultrastructure
3.
Curr Opin Cell Biol ; 81: 102158, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36913831

ABSTRACT

Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.


Subject(s)
Meiosis , Zebrafish , Animals , Mice , Telomere , Microtubule-Organizing Center , Centrosome , Reproduction , Germ Cells
4.
Front Cell Dev Biol ; 10: 826892, 2022.
Article in English | MEDLINE | ID: mdl-35733854

ABSTRACT

Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.

5.
Science ; 376(6599): eabh3104, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35549308

ABSTRACT

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery and extends throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies and suggests that cilia can control chromosomal dynamics.


Subject(s)
Chromosome Pairing , Cilia , Oocytes , Oogenesis , Ovary , Animals , Centromere/genetics , Centromere/physiology , Chromosome Pairing/genetics , Chromosome Pairing/physiology , Cilia/physiology , Female , Fertility/physiology , Mice , Morphogenesis , Oocytes/growth & development , Oogenesis/genetics , Oogenesis/physiology , Ovary/growth & development , Telomere/genetics , Telomere/physiology , Zebrafish/genetics , Zebrafish/physiology
6.
Dev Biol ; 484: 1-11, 2022 04.
Article in English | MEDLINE | ID: mdl-35065906

ABSTRACT

The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Cell Polarity/genetics , Mammals/metabolism , Oocytes/metabolism , Oogenesis/genetics , Organelles/metabolism , Proteomics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Methods Mol Biol ; 2218: 137-155, 2021.
Article in English | MEDLINE | ID: mdl-33606229

ABSTRACT

Oocyte production is crucial for sexual reproduction. Recent findings in zebrafish and other established model organisms emphasize that the early steps of oogenesis involve the coordination of simultaneous and tightly sequential processes across cellular compartments and between sister cells. To fully understand the mechanistic framework of these coordinated processes, cellular and morphological analysis in high temporal resolution is required. Here, we provide a protocol for four-dimensional live time-lapse analysis of cultured juvenile zebrafish ovaries. We describe how multiple-stage oocytes can be simultaneously analyzed in single ovaries, and several ovaries can be processed in single experiments. In addition, we detail adequate conditions for quantitative image acquisition. Finally, we demonstrate that using this protocol, we successfully capture rapid meiotic chromosomal movements in early prophase for the first time in zebrafish oocytes, in four dimensions and in vivo. Our protocol expands the use of the zebrafish as a model system to understand germ cell and ovarian development in postembryonic stages.


Subject(s)
Chromosomes/physiology , Meiosis/physiology , Oogenesis/physiology , Ovary/physiology , Time-Lapse Imaging/methods , Zebrafish/physiology , Animals , Female , Oocytes , Sex Differentiation/physiology
8.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-30936121

ABSTRACT

During amphibian development, neural patterning occurs via a two-step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re-specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt-signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP-antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high-to-low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF-dependent manner, while inhibiting hindbrain fates. These results suggest a need to re-evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.


Subject(s)
Body Patterning , Bone Morphogenetic Proteins/metabolism , Nervous System/embryology , Nervous System/metabolism , Neurogenesis , Signal Transduction , Wnt Proteins/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Ectoderm/embryology , Ectoderm/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Mesoderm/embryology , Mesoderm/metabolism , Rhombencephalon/embryology , Rhombencephalon/metabolism , Spinal Cord/embryology , Spinal Cord/metabolism , Xenopus laevis
9.
Dev Biol ; 430(2): 275-287, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28666956

ABSTRACT

A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates.


Subject(s)
Cell Differentiation/physiology , Cell Polarity/physiology , Meiosis/physiology , Mitosis/physiology , Oogenesis/physiology , Vertebrates/physiology , Adult Germline Stem Cells/cytology , Animals , Chromosomes/ultrastructure , Cilia/physiology , Female , Mice , Models, Biological , Organelles/physiology , Organelles/ultrastructure , Oryzias/physiology , Ovary/cytology , Ovary/growth & development , Ovum/cytology , Telomere/physiology , Xenopus laevis/physiology , Zebrafish/physiology
10.
Int J Dev Biol ; 61(3-4-5): 179-193, 2017.
Article in English | MEDLINE | ID: mdl-28621416

ABSTRACT

While the differentiation of oocytes is key for embryonic development, and its investigation is crucial for advancing our understanding of human reproduction and fertility, many fundamental questions in oogenesis have been long standing. However, recent technical advances have led to several breakthroughs mainly in mice and zebrafish. Here I review these recent findings, including regulation and organization of the germline cyst, the mechanistics of chromosomal pairing, establishment of cell polarity, and formation of a universal mRNA-protein (mRNP) granule called the Balbiani body. I discuss common themes in oogenesis from frogs, fish and mouse and compare them to findings from C. elegans and Drosophila. The zebrafish juvenile ovary is an attractive model where these individual processes can be investigated, but also revealing how they are inter-coordinated in oocyte differentiation. A conserved cellular organizer was discovered in the zebrafish oocyte that seems to function at a nexus of oocyte differentiation. This organizer, termed the Meiotic Vegetal Center (MVC), is composed of the oocyte centrosome, and couples meiotic chromosomal pairing with oocyte polarization and Balbiani body formation. The MVC breaks the oocyte symmetry, is regulated by upstream mitotic division in the cyst and nucleates Balbiani body mRNPs prion-like aggregation downstream. These processes can shed new light on broad questions in biology, such as how mitosis contributes to cell polarity, and how prion aggregation which lead to neurodegenerative disease when awry, is regulated in a physiological context. Furthermore, novel cytoskeletal structures can unravel cytoplasmic mechanical functions in chromosomal pairing. Finally, together with recently developed tools, genome editing technology now enables a robust genetic analysis of these fundamental processes in the zebrafish, paving the way for a comprehensive cell and developmental view of vertebrate oogenesis.


Subject(s)
Cell Polarity , Gene Expression Regulation, Developmental , Meiosis , Mitosis , Oocytes/cytology , Vertebrates/physiology , 3' Untranslated Regions , Animals , Body Patterning , Caenorhabditis elegans , Cell Differentiation , Cilia/metabolism , Cytoplasm/metabolism , Cytoskeleton/metabolism , Female , Genome , Humans , Male , Mice , Models, Animal , Neurodegenerative Diseases/metabolism , Nuclear Envelope/metabolism , Oocytes/metabolism , Oogenesis/physiology , Ovary/cytology , Stress, Mechanical , Zebrafish/embryology
11.
Dev Biol ; 430(2): 310-324, 2017 10 15.
Article in English | MEDLINE | ID: mdl-27988227

ABSTRACT

Oocyte differentiation is a highly dynamic and intricate developmental process whose mechanistic understanding advances female reproduction, fertility, and ovarian cancer biology. Despite the many attributes of the zebrafish model, it has yet to be fully exploited for the investigation of early oocyte differentiation and ovarian development. This is partly because the properties of the adult zebrafish ovary make it technically challenging to access early stage oocytes. As a result, characterization of these stages has been lacking and tools for their analysis have been insufficient. To overcome these technical hurdles, we took advantage of the juvenile zebrafish ovary, where early stage oocytes can readily be found in high numbers and progress in a predictable manner. We characterized the earliest stages of oocyte differentiation and ovarian development and defined accurate staging criteria. We further developed protocols for quantitative microscopy, live time-lapse imaging, ovarian culture, and isolation of stage-specific oocytes for biochemical analysis. These methods have recently provided us with an unprecedented view of early oogenesis, allowing us to study formation of the Balbiani body, a universal oocyte granule that is associated with oocyte survival in mice and required for oocyte and egg polarity in fish and frogs. Despite its tremendous developmental significance, the Bb has been little investigated and how it forms was unknown in any species for over two centuries. We were able to trace Balbiani body formation and oocyte symmetry breaking to the onset of meiosis. Through this investigation we revealed novel cytoskeletal structures in oocytes and the contribution of specialized cellular organization to differentiation. Overall, the juvenile zebrafish ovary arises as an exciting model for studies of cell and developmental biology. We review these and other recent advances in vertebrate oogenesis in an accompanying manuscript in this issue of Developmental Biology. Here, we describe the protocols for ovarian investigation that we developed in the zebrafish, including all experimental steps that will easily allow others to reproduce such analysis. This juvenile ovary toolbox also contributes to establishing the zebrafish as a model for post-larval developmental stages.


Subject(s)
Oogenesis , Ovum/physiology , Specimen Handling/methods , Time-Lapse Imaging/methods , Animals , Cells, Cultured , Cytoskeleton/ultrastructure , DNA/analysis , Female , Genes, Reporter , In Situ Hybridization, Fluorescence/methods , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Meiosis , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Oocytes/physiology , Oocytes/ultrastructure , Organelles/physiology , Organelles/ultrastructure , Ovary/cytology , Ovary/growth & development , Ovum/chemistry , Ovum/ultrastructure , RNA, Messenger/analysis , Sex Determination Processes , Staining and Labeling/methods , Zebrafish
12.
Adv Exp Med Biol ; 953: 173-207, 2017.
Article in English | MEDLINE | ID: mdl-27975273

ABSTRACT

Cell polarity generates intracellular asymmetries and functional regionalization in tissues and morphogenetic processes. Cell polarity in development often relies on mechanisms of RNA localization to specific subcellular domains to define the identity of future developing tissues. The totipotent egg of most animals illustrates in a grand way the importance of cell polarity and RNA localization in regulating multiple crucial developmental events. The polarization of the egg arises during its development in oogenesis. RNAs localize asymmetrically in the early oocyte defining its animal-vegetal (AV) axis, which upon further elaboration in mid- and late-oogenesis stages produces a mature egg with specific localized factors along its AV axis. These localized factors will define the future anterior-posterior (AP) and dorsal-ventral (DV) axes of the embryo. Furthermore, AV polarity confines germ cell determinants to the vegetal pole, from where they redistribute to the cleavage furrows of the 2- and 4-cell stage embryo, ultimately specifying the primordial germ cells (PGCs). The sperm entry region during fertilization is also defined by the AV axis. In frogs and fish, sperm enters through the animal pole, similar to the mouse where it enters predominantly in the animal half. Thus, AV polarity establishment and RNA localization are involved in all the major events of early embryonic development. In this chapter, we will review the RNA localization mechanisms in vertebrate oocytes that are key to embryonic patterning, referring to some of the groundbreaking studies in frog oocytes and incorporating the current genetic evidence from the zebrafish.


Subject(s)
Cell Polarity/genetics , Embryonic Development/genetics , Oogenesis/genetics , RNA/genetics , Animals , Fertilization/genetics , Germ Cells/growth & development , Germ Cells/metabolism , Mice , Morphogenesis/genetics , Oocytes/growth & development , Xenopus/embryology , Zebrafish/embryology
13.
PLoS Biol ; 14(1): e1002335, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26741740

ABSTRACT

The source of symmetry breaking in vertebrate oocytes is unknown. Animal-vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal-vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic-vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic-vegetal organizing center. These results suggest that centrosome positioning is set by the last mitotic oogonial division plane. Thus, oocytes are polarized in two steps: first, mitotic divisions preset the centrosome with no obvious polarization yet, then the meiotic-vegetal center forms at zygotene bouquet stages, when symmetry is, in effect, broken.


Subject(s)
Cell Polarity , Chromosomes/physiology , Meiosis , Oocytes/physiology , Animals , Centrosome/physiology , Microtubules/physiology , Zebrafish
14.
Development ; 139(8): 1487-97, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22399680

ABSTRACT

During development, early inducing programs must later be counterbalanced for coordinated tissue maturation. In Xenopus laevis embryos, activation of the Meis3 transcription factor by a mesodermal Wnt3a signal lies at the core of the hindbrain developmental program. We now identify a hindbrain restricting circuit, surprisingly comprising the hindbrain inducers Wnt3a and Meis3, and Tsh1 protein. Functional and biochemical analyses show that upon Tsh1 induction by strong Wnt3a/Meis3 feedback loop activity, the Meis3-Tsh1 transcription complex represses the Meis3 promoter, allowing cell cycle exit and neuron differentiation. Meis3 protein exhibits a conserved dual-role in hindbrain development, both inducing neural progenitors and maintaining their proliferative state. In this regulatory circuit, the Tsh1 co-repressor controls transcription factor gene expression that modulates cell cycle exit, morphogenesis and differentiation, thus coordinating neural tissue maturation. This newly identified Wnt/Meis/Tsh circuit could play an important role in diverse developmental and disease processes.


Subject(s)
Co-Repressor Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Wnt3A Protein/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Differentiation , Gene Expression Profiling , Neurons/metabolism , Open Reading Frames , Plasmids/metabolism , Rhombencephalon/metabolism , Transcription, Genetic , Xenopus , Zebrafish , beta Catenin/metabolism
15.
Mol Biol Cell ; 22(13): 2409-21, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21551070

ABSTRACT

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior-posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK-Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/genetics , Focal Adhesions/metabolism , Neural Plate/growth & development , Wnt3 Protein/biosynthesis , Wnt3 Protein/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Forkhead Transcription Factors/metabolism , Gene Expression/genetics , Humans , Nerve Tissue Proteins/metabolism , Neural Plate/metabolism , Phenotype , Protein Binding , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , Signal Transduction , Xenopus/embryology , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/metabolism
16.
Development ; 137(9): 1531-41, 2010 May.
Article in English | MEDLINE | ID: mdl-20356957

ABSTRACT

In vertebrates, canonical Wnt signaling controls posterior neural cell lineage specification. Although Wnt signaling to the neural plate is sufficient for posterior identity, the source and timing of this activity remain uncertain. Furthermore, crucial molecular targets of this activity have not been defined. Here, we identify the endogenous Wnt activity and its role in controlling an essential downstream transcription factor, Meis3. Wnt3a is expressed in a specialized mesodermal domain, the paraxial dorsolateral mesoderm, which signals to overlying neuroectoderm. Loss of zygotic Wnt3a in this region does not alter mesoderm cell fates, but blocks Meis3 expression in the neuroectoderm, triggering the loss of posterior neural fates. Ectopic Meis3 protein expression is sufficient to rescue this phenotype. Moreover, Wnt3a induction of the posterior nervous system requires functional Meis3 in the neural plate. Using ChIP and promoter analysis, we show that Meis3 is a direct target of Wnt/beta-catenin signaling. This suggests a new model for neural anteroposterior patterning, in which Wnt3a from the paraxial mesoderm induces posterior cell fates via direct activation of a crucial transcription factor in the overlying neural plate.


Subject(s)
Homeodomain Proteins/metabolism , Mesoderm/embryology , Neural Plate/embryology , Signal Transduction/physiology , Wnt Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Chromatin Immunoprecipitation , Homeodomain Proteins/genetics , In Situ Hybridization , In Vitro Techniques , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Wnt Proteins/genetics , Wnt3 Protein , Wnt3A Protein , Xenopus Proteins/genetics , Xenopus laevis , Zebrafish Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
17.
Dev Biol ; 338(1): 50-62, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19944089

ABSTRACT

In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.


Subject(s)
Cell Lineage , Homeodomain Proteins/metabolism , Nervous System/cytology , Nervous System/embryology , Paired Box Transcription Factors/metabolism , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Fibroblast Growth Factor 3/metabolism , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Genes, Dominant/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System/metabolism , Neural Crest/cytology , Neural Crest/embryology , Neural Crest/metabolism , Neurons/cytology , Neurons/metabolism , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Phenotype , Transcription Factors/genetics , Xenopus Proteins/genetics , Xenopus laevis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...