Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 100: 104939, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194742

ABSTRACT

BACKGROUND: Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of growing genomic variants can therefore serve as a predictor of future waves, enabling timely implementation of countermeasures such as non-pharmaceutical interventions (social distancing), additional vaccination (booster campaigns), or healthcare capacity adjustments. The large amount of SARS-CoV-2 genomic sequence data produced during the pandemic has provided a unique opportunity to explore the utility of these data for generating early warning signals (EWS). METHODS: We developed an analytical pipeline (Transmission Fitness Polymorphism Scanner - designated in an R package mrc-ide/tfpscanner) for systematically exploring all clades within a SARS-CoV-2 virus phylogeny to detect variants showing unusually high growth rates. We investigated the use of these cluster growth rates as the basis for a variety of statistical time series to use as leading indicators for the epidemic waves in the UK during the pandemic between August 2020 and March 2022. We also compared the performance of these phylogeny-derived leading indicators with a range of non-phylogeny-derived leading indicators. Our experiments simulated data generation and real-time analysis. FINDINGS: Using phylogenomic analysis, we identified leading indicators that would have generated EWS ahead of significant increases in COVID-19 hospitalisations in the UK between August 2020 and March 2022. Our results also show that EWS lead time is sensitive to the threshold set for the number of false positive (FP) EWS. It is often possible to generate longer EWS lead times if more FP EWS are tolerated. On the basis of maximising lead time and minimising the number of FP EWS, the best performing leading indicators that we identified, amongst a set of 1.4 million, were the maximum logistic growth rate (LGR) amongst clusters of the dominant Pango lineage and the mean simple LGR across a broader set of clusters. In the case of the former, the time between the EWS and wave inflection points (a conservative measure of wave start dates) for the seven waves ranged between a 20-day lead time and a 7-day lag, with a mean lead time of 5.4 days. The maximum number of FP EWS generated prior to a true positive (TP) EWS was two and this only occurred for two of the seven waves in the period. The mean simple LGR amongst a broader set of clusters also performed well in terms of lead time but with slightly more FP EWS. INTERPRETATION: As a result of the significant surveillance effort during the pandemic, early detection of SARS-CoV-2 variants of concern Alpha, Delta, and Omicron provided some of the first examples where timely detection and characterisation of pathogen variants has been used to tailor public health response. The success of our method in generating early warning signals based on phylogenomic analysis for SARS-CoV-2 in the UK may make it a worthwhile addition to existing surveillance strategies. In addition, the method may be translatable to other countries and/or regions, and to other pathogens with large-scale and rapid genomic surveillance. FUNDING: This research was funded in whole, or in part, by the Wellcome Trust (220885_Z_20_Z). For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. KOD, OB, VBF and EMV acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/X020258/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. RMC acknowledges funding from the Wellcome Trust Collaborators Award (206298/Z/17/Z).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Phylogeny , Pandemics/prevention & control
2.
J Antimicrob Chemother ; 78(Suppl 2): ii37-ii42, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37995354

ABSTRACT

The COVID-19 pandemic saw unprecedented resources and funds driven into research for the development, and subsequent rapid distribution, of vaccines, diagnostics and directly acting antivirals (DAAs). DAAs have undeniably prevented progression and life-threatening conditions in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, there are concerns of antimicrobial resistance (AMR), antiviral resistance specifically, for DAAs. To preserve activity of DAAs for COVID-19 therapy, as well as detect possible mutations conferring resistance, antimicrobial stewardship and surveillance were rapidly implemented in England. This paper expands on the ubiquitous ongoing public health activities carried out in England, including epidemiologic, virologic and genomic surveillance, to support the stewardship of DAAs and assess the deployment, safety, effectiveness and resistance potential of these novel and repurposed therapeutics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Anti-Bacterial Agents/therapeutic use , Pandemics/prevention & control , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Drug Resistance, Bacterial , England/epidemiology
3.
Nat Commun ; 14(1): 3334, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286554

ABSTRACT

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Mutation , Antibodies, Neutralizing , Antibodies, Viral
4.
Virus Evol ; 8(2): veac080, 2022.
Article in English | MEDLINE | ID: mdl-36533153

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

5.
Antibiotics (Basel) ; 11(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421285

ABSTRACT

IncL/M broad-host-range conjugative plasmids are involved in the global spread of blaOXA-48 and the emergence of blaNDM-1. The aim of this study was to evaluate the transmission potential of plasmids encoding the emergent NDM-1 carbapenemase compared to the pandemic OXA-48. The conjugation rate and fitness cost of IncM2 and IncL plasmids encoding these carbapenemase genes were tested using a variety of host bacteria. Genomic analysis of uropathogenic Escherichia coli SAP1756 revealed that blaNDM-1 was encoded on an IncM2 plasmid, which also harboured blaTEM-1, bleMBL and sul1 and was highly similar to plasmids isolated from the same geographical area. Conjugation experiments demonstrated that NDM-1 and OXA-48-carrying plasmids transfer successfully between different Enterobacterales species, both in vitro and in vivo. Interestingly, E. coli isolates tested as recipients belonging to phylogroups A, B1, D and F were able to receive IncM2 plasmid pSAP1756, while phylogroups B2, C, E and G were not permissive to its acquisition. In general, the IncL OXA-48-carrying plasmids tested transferred at higher rates than IncM2 harbouring NDM-1 and imposed a lower burden to their host, possibly due to the inactivation of the tir fertility inhibition gene and reflecting their worldwide dissemination. IncM2 plasmids carrying blaNDM-1 are considered emergent threats that need continuous monitoring. In addition to sequencing efforts, phenotypic analysis of conjugation rates and fitness cost are effective methods for estimating the pandemic potential of antimicrobial resistance plasmids.

6.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: mdl-35604946

ABSTRACT

Introduction. Increasing numbers of carbapenemase-producing Enterobacterales (CPE), which can be challenging to treat, have been referred to the national reference laboratory in England since the early 2000s.Gap Statement/Aim. Previous studies on CPE in the UK have focussed on localized outbreaks. We applied whole-genome sequencing (WGS) to isolates referred to the national reference laboratory over 30 months to inform our understanding of CPE epidemiology in England.Methodology. The first confirmed CPE from each new patient referred by an English diagnostic laboratory between 1 January 2014 and 30 June 2016 was sequenced on an Illumina HiSeq 2500. Multiple isolates from the same patient were included from either different species or the same species with different carbapenemase genes. The data were analysed using an in-house bioinformatics pipeline that determines species identification, multi-locus sequence typing (MLST) profile and antimicrobial resistance gene content.Results. A total of 2658 non-duplicate CPE were sequenced amongst which three host organisms belonging to diverse sequence types (STs) predominated: Klebsiella pneumoniae (1380/2658, 51.9 %; 177 STs), Escherichia coli (723/2658, 27.2 %; 133 STs) and Enterobacter cloacae (294/2658, 11.1 %; 88 STs). Thirty different carbapenemase gene variants were identified, although bla OXA-48-like (1122/2658, 42.2%), bla NDM (692/2658, 26.0 %), bla KPC (571/2658, 21.5 %), bla VIM (100/2658, 3.8 %) and bla IMP (33/2658, 1.2 %) predominated. ST/carbapenemase gene pairings represented widely distributed high-risk clones or clusters at a regional or hospital level.Conclusion. CPE referred to the national reference laboratory are diverse, suggesting multiple introductions to England and a role for horizontal transfer of carbapenemase genes in English CPE epidemiology.


Subject(s)
Enterobacteriaceae Infections , Bacterial Proteins/genetics , Enterobacteriaceae Infections/epidemiology , Escherichia coli/genetics , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , beta-Lactamases/genetics
7.
Public Health ; 204: 21-24, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131679

ABSTRACT

OBJECTIVES: Prisons are high-risk settings for infectious disease outbreaks because of their highly dynamic and crowded nature. During late 2020, prisons in England observed a surge in COVID-19 infection. This study describes the emergence of the Alpha variant in prisons during this period. METHODS: Alpha and non-Alpha variant COVID-19 cases were identified in prisoners in England using address-matched laboratory notifications and genomic information from COG-UK. RESULTS: Of 14,094 COVID-19-positive prisoner cases between 1 October 2020 and 28 March 2021, 11.5% (n = 1621) had sequencing results. Of these, 1082 (66.7%) were identified as the Alpha variant. Twenty-nine (2.7%) Alpha cases required hospitalisation compared with only five (1.0%; P = 0.02) non-Alpha cases. A total of 14 outbreaks were identified with the median attack rate higher for Alpha (17.9%, interquartile range [IQR] 3.2%-32.2%; P = 0.11) than non-Alpha outbreaks (3.5%, IQR 2.0%-10.2%). CONCLUSION: Higher attack rates and increased likelihood of hospitalisations were observed for Alpha cases compared with non-Alpha. This suggests a key contribution to the rise in cases, hospitalisations and outbreaks in prisons in the second wave. With prisons prone to COVID-19 outbreaks and the potential to act as reservoirs for variants of concern, sequencing of prison-associated cases alongside whole-institution vaccination should be prioritised.


Subject(s)
COVID-19 , Prisoners , COVID-19/epidemiology , England/epidemiology , Humans , Prisons , SARS-CoV-2/genetics
8.
Nat Commun ; 13(1): 1012, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197443

ABSTRACT

Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.


Subject(s)
COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Genomics , Health Impact Assessment , Humans , SARS-CoV-2/classification , Travel/legislation & jurisprudence , Travel-Related Illness
9.
J Antimicrob Chemother ; 77(3): 620-624, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34993543

ABSTRACT

OBJECTIVES: To assess the genetic contexts surrounding blaNDM-1 genes carried on IncM plasmids harboured by six carbapenemase-producing Enterobacterales (CPE) isolates referred to the UK Health Security Agency's Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit. METHODS: Between 2014 and 2018, the AMRHAI Reference Unit undertook WGS of CPE isolates using Illumina NGS. Nanopore sequencing was used for selected isolates and publicly available plasmid references were downloaded. Analysis of incRNA, which encodes the antisense RNA regulating plasmidic repA gene expression, was performed and bioinformatics tools were used to analyse whole plasmid sequences. RESULTS: Of 894 NDM-positive isolates of Enterobacterales, 44 NDM-1-positive isolates of five different species (Citrobacter spp., Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca) encoded the IncRNA locus of IncM2 plasmids. Long-read sequencing of six diverse isolates revealed related IncM2, NDM-1-encoding plasmids. Plasmid 'backbone' areas were conserved and contrasted with highly variable resistance regions. Sub-groupings of IncM2 plasmids encoding blaNDM-1 were detected; one sub-group occurred in five different health regions of England in every year. The diversity of NDM-1-encoding resistance gene integrons and transposons and their insertions sites in the plasmids indicated that NDM-1 has been acquired repeatedly by IncM2 variants. CONCLUSIONS: The use of sequencing helped inform: (i) a wide geographical distribution of isolates encoding NDM-1 on emergent IncM2 plasmids; (ii) variant plasmids have acquired NDM-1 separately; and (iii) dynamic arrangements and evolution of the resistance elements in this plasmid group. The geographical and temporal distribution of IncM2 plasmids that encode NDM-1 highlights them as a public health threat that requires ongoing monitoring.


Subject(s)
Drug Resistance, Bacterial/genetics , Enterobacteriaceae , beta-Lactamases , Bacterial Proteins/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/genetics
10.
J Antimicrob Chemother ; 77(1): 98-111, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34568905

ABSTRACT

BACKGROUND: Aztreonam/avibactam is being developed for its broad activity against carbapenemase-producing Enterobacterales, including those with metallo-ß-lactamases (MBLs). Its potential to select resistance in target pathogens was explored. Findings are compared with previous data for ceftazidime/avibactam and ceftaroline/avibactam. METHODS: Single-step mutants were sought from 52 Enterobacterales with AmpC, ESBL, KPC, MBL and OXA-48-like enzymes. Mutation frequencies were calculated. MICs were determined by CLSI agar dilution. Genomes were sequenced using Illumina methodology. RESULTS: Irrespective of ß-lactamase type and of whether avibactam was used at 1 or 4 mg/L, mutants could rarely be obtained at >4× the starting MIC, and most MIC rises were correspondingly small. Putative resistance (MIC >8 + 4 mg/L) associated with changes to ß-lactamases was seen only for mutants of AmpC, where it was associated with Asn346Tyr and Tyr150Cys substitutions. Asn346Tyr led to broad resistance to avibactam combinations; Tyr150Cys significantly affected only aztreonam/avibactam. MIC rises up to 4 + 4 mg/L were seen for producers of mutant KPC-2 or -3 enzymes, and were associated with Trp105Arg, Ser106Pro and Ser109Pro substitutions, which all reduced the MICs of other ß-lactams. For producers of other ß-lactamase types, we largely found mutants with lesions in baeRS or envZ, putatively affecting drug accumulation. Single mutants had lesions in ampD, affecting AmpC expression or ftsI, encoding PBP3. CONCLUSIONS: The risk of mutational resistance to aztreonam/avibactam appears smaller than for ceftazidime/avibactam, where Asp179Tyr arises readily in KPC enzymes, conferring frank resistance. Asn346 substitutions in AmpC enzymes may remain a risk, having been repeatedly selected with multiple avibactam combinations in vitro.


Subject(s)
Azabicyclo Compounds , Aztreonam , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
11.
Microorganisms ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34576763

ABSTRACT

Sink waste traps and drains are a reservoir for multi-drug resistant Gram-negative bacteria in the hospital environment. It has been suggested that these bacteria can migrate through hospital plumbing. Hospital waste traps were installed in a laboratory model system where sinks were connected through a common wastewater pipe. Enterobacterales populations were monitored using selective culture, MALDI-TOF identification and antibiotic resistance profiling before and after a wastewater backflow event. When transfer between sinks was suspected, isolates were compared using whole-genome sequencing. Immediately after the wastewater backflow, two KPC-producing Enterobacter cloacae were recovered from a waste trap in which Carbapenemase-producing Enterobacterales (CPE) had not been detected previously. The isolates belonged to ST501 and ST31 and were genetically indistinguishable to those colonising sinks elsewhere in the system. Following inter-sink transfer, KPC-producing E. cloacae ST501 successfully integrated into the microbiome of the recipient sink and was detected in the waste trap water at least five months after the backflow event. Seven weeks and three months after the backflow, other inter-sink transfers involving Escherichia coli ST5295 and KPC-producing E. cloacae ST501 were also observed.

13.
Pediatr Infect Dis J ; 39(3): 221-228, 2020 03.
Article in English | MEDLINE | ID: mdl-31876614

ABSTRACT

BACKGROUND: Clostridium difficile is capable of causing severe enterocolitis in adults. The significance of toxin-producing C. difficile in children with diarrhea is unclear and practice differs on whether to institute treatment. We aimed to characterize the microbiome in relation to the presence of C. difficile and co-infection with other pathogens and to describe host response to infection. METHODS: Participants were children with acute diarrhea, 0-16 years of age, from whom stool samples had been submitted to the hospital laboratory for routine microbiology/virology. Convenience sampling was used for 50 prospective and 150 retrospective samples. No participants were treated for C. difficile. Rates of culture positivity for C. difficile, presence of toxin and PCR-ribotype were compared between age groups. Presence of other potential pathogens, comorbidities and complications were recorded. Microbiotal diversity was measured by 16S profiling. RESULTS: Nineteen of 77 (25%) children <2 years of age and 13 of 119 (11%) children >2 years of age were C. difficile positive, of whom 10 (53%) and 9 (69%), respectively, carried toxigenic strains. Increased Shannon diversity was seen in children carrying C. difficile, with altered milieu. Presence of C. difficile was not associated with adverse clinical outcomes. In stools containing both Norovirus and C. difficile, there was increased relative abundance of verrucomicrobia. CONCLUSIONS: Children with diarrhea regularly carried toxigenic and non-toxigenic strains of C. difficile, demonstrating enhanced microbiotal diversity, and change in milieu, without apparent morbidity. This unexpected finding is contrary to that seen in adults with C. difficile disease.


Subject(s)
Bacteremia , Diarrhea/epidemiology , Diarrhea/etiology , Enterocolitis, Pseudomembranous/epidemiology , Enterocolitis, Pseudomembranous/microbiology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Adolescent , Bacterial Toxins/genetics , Biomarkers , Child , Child, Preschool , Clostridioides difficile/classification , Cytokines/metabolism , Feces/chemistry , Feces/microbiology , Female , Hospitalization , Humans , Incidence , Infant , Infant, Newborn , Male , Metagenomics/methods , Molecular Typing , RNA, Ribosomal, 16S
14.
Euro Surveill ; 24(37)2019 Sep.
Article in English | MEDLINE | ID: mdl-31530344

ABSTRACT

BackgroundEscherichia coli ST131, a global, high-risk clone, comprises fluoroquinolone resistance (FQ-R) mutations and CTX-M extended-spectrum beta-lactamases associated with the fimH30-encoding clades, C1 and C2. Further carbapenem resistance development in ST131 is a public health concern.AimThis observational study aimed to probe the diversity of carbapenemase-producing E. coli (CP E. coli) ST131 across England.MethodsST131 isolates were identified using whole-genome sequencing (WGS) data generated for all non-duplicate CP E. coli from human samples submitted to the national reference laboratory from January 2014 to June 2016. Antimicrobial resistance (AMR) gene content and single nucleotide polymorphism (SNP) data were compared against a published ST131 phylogeny and analysed alongside patient metadata.ResultsThirty-nine genetically diverse ST131 CP E. coli, from eight of nine regions, represented 10% of CP E. coli isolates sequenced. Ten and eight isolates were from the FQ-susceptible (FQ-S) clades A and B, while eight and 15 isolates belonged to the FQ-R clades C1 or C2, respectively. Seven distinct carbapenemases were identified: KPC-2 (21 isolates, 6 regions) frequently occurred among clade C2 isolates (n = 10). OXA-48-producers (10 isolates, 3 regions) were often from clade A (n = 5). NDM-1 (n = 4), NDM-5 (n = 1), VIM-1 (n = 1), VIM-4 (n = 1) and OXA-181 (n = 1) were also identified. Clade C2 isolates encoded more AMR genes than those from clades A (p = 0.02), B (p = 9.6 x 10-3) or C1 (p = 0.03).ConclusionWhen compared with its global predominance among ESBL-E. coli, ST131 represented a fraction of the CP E. coli received, belonging to diverse clades and encoding diverse carbapenemases. The greater accumulation of resistance genes in clade C2 isolates highlights the need for ongoing monitoring of this high-risk lineage.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Carbapenem-Resistant Enterobacteriaceae , Drug Resistance, Multiple, Bacterial , England/epidemiology , Escherichia coli/classification , Escherichia coli/isolation & purification , Genotype , Humans , Incidence , Microbial Sensitivity Tests , Molecular Epidemiology , Molecular Typing , Phylogeny , Plasmids/analysis , Plasmids/genetics , Polymorphism, Single Nucleotide , Whole Genome Sequencing
15.
PLoS One ; 13(10): e0202460, 2018.
Article in English | MEDLINE | ID: mdl-30308045

ABSTRACT

Inflammatory bowel disease (IBD) is associated with anaemia and oral iron replacement to correct this can be problematic, intensifying inflammation and tissue damage. The intestinal microbiota also plays a key role in the pathogenesis of IBD, and iron supplementation likely influences gut bacterial diversity in patients with IBD. Here, we assessed the impact of dietary iron, using chow diets containing either 100, 200 or 400 ppm, fed ad libitum to adult female C57BL/6 mice in the presence or absence of colitis induced using dextran sulfate sodium (DSS), on (i) clinical and histological severity of acute DSS-induced colitis, and (ii) faecal microbial diversity, as assessed by sequencing the V4 region of 16S rRNA. Increasing or decreasing dietary iron concentration from the standard 200 ppm exacerbated both clinical and histological severity of DSS-induced colitis. DSS-treated mice provided only half the standard levels of iron ad libitum (i.e. chow containing 100 ppm iron) lost more body weight than those receiving double the amount of standard iron (i.e. 400 ppm); p<0.01. Faecal calprotectin levels were significantly increased in the presence of colitis in those consuming 100 ppm iron at day 8 (5.94-fold) versus day-10 group (4.14-fold) (p<0.05), and for the 400 ppm day-8 group (8.17-fold) versus day-10 group (4.44-fold) (p<0.001). In the presence of colitis, dietary iron at 400 ppm resulted in a significant reduction in faecal abundance of Firmicutes and Bacteroidetes, and increase of Proteobacteria, changes which were not observed with lower dietary intake of iron at 100 ppm. Overall, altering dietary iron intake exacerbated DSS-induced colitis; increasing the iron content of the diet also led to changes in intestinal bacteria diversity and composition after colitis was induced with DSS.


Subject(s)
Anemia/drug therapy , Colitis/diet therapy , Inflammatory Bowel Diseases/drug therapy , Iron, Dietary/administration & dosage , Iron/metabolism , Administration, Oral , Anemia/microbiology , Anemia/pathology , Animals , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Mice , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...