Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 52016 11 18.
Article in English | MEDLINE | ID: mdl-27855786

ABSTRACT

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.


Subject(s)
Haptophyta/microbiology , Haptophyta/physiology , Indoleacetic Acids/metabolism , Rhodobacteraceae/growth & development , Rhodobacteraceae/metabolism , Tryptophan/metabolism , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Bacterial Adhesion , Cell Survival/drug effects , Haptophyta/metabolism
2.
J Med Chem ; 58(9): 3806-16, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25844760

ABSTRACT

The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice.


Subject(s)
Indazoles/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/toxicity , Female , Humans , Indazoles/pharmacology , Indazoles/toxicity , Interleukin-13/biosynthesis , Interleukin-2/biosynthesis , Jurkat Cells , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/toxicity , Sulfoxides/chemistry , Sulfoxides/pharmacology , Sulfoxides/toxicity
3.
J Med Chem ; 57(13): 5714-27, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24918870

ABSTRACT

Interleukin-2 inducible T-cell kinase (ITK), a member of the Tec family of tyrosine kinases, plays a major role in T-cell signaling downstream of the T-cell receptor (TCR), and considerable efforts have been directed toward discovery of ITK-selective inhibitors as potential treatments of inflammatory disorders such as asthma. Using a previously disclosed indazole series of inhibitors as a starting point, and using X-ray crystallography and solubility forecast index (SFI) as guides, we evolved a series of tetrahydroindazole inhibitors with improved potency, selectivity, and pharmaceutical properties. Highlights include identification of a selectivity pocket above the ligand plane, and identification of appropriate lipophilic substituents to occupy this space. This effort culminated in identification of a potent and selective ITK inhibitor (GNE-9822) with good ADME properties in preclinical species.


Subject(s)
Indazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Design , Humans , Indazoles/pharmacokinetics , Indazoles/pharmacology , Jurkat Cells , Kinetics , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...