Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Insect Sci ; 21(2)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33822128

ABSTRACT

The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae), is the most important coffee pest in most of the coffee growing countries. CBB females leave old dry berries after harvest and search for dry noninfested berries on the plant or on the ground to lay eggs or to use as refuge until new berries are available on the coffee trees in the following season. The CBB infestation level and emergence from berries on the ground or on the plants were evaluated in two fields post-harvest in the Spring in Brazil over two seasons. Twenty infested or noninfested berries in separate cages (250 ml plastic cups) were placed on the plants or on the ground under the tree canopy, in each field. The number of infested berries and CBB females that emerged from the infested berries were recorded weekly. CBB emergence was higher from berries on the ground than those on the coffee trees in both seasons, whereas CBB infestation was higher on coffee berries on the plants than those on the ground in season I. Insolation (hours of sunlight) and temperature were the main covariates that affected emergence and infestation by this insect. The results are discussed for monitoring CBB during the time of dispersal with implications on integrated management of this pest.


Subject(s)
Coffea , Population Dynamics , Weevils/growth & development , Animals , Climate , Crops, Agricultural , Ecological Parameter Monitoring , Factor Analysis, Statistical , Pest Control , Plants , Seeds , Sunlight , Temperature , Weevils/physiology
2.
J Econ Entomol ; 113(4): 1955-1962, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32789524

ABSTRACT

The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is an economic pest of maize in the U.S. Corn Belt. The objective of this study was to determine the baseline susceptibility of a laboratory NCR strain to Bt proteins eCry3.1Ab, mCry3A, Cry3Bb1, and Cry34/35Ab1 using seedling, single plant, and diet-toxicity assays. Plant assays were performed in greenhouse using corn hybrids expressing one of the Bt proteins and each respective near-isoline. Diet-toxicity assays, consisting of Bt proteins overlaid onto artificial diet were also conducted. In both plant assays, significantly more larvae survived Cry34/35Ab1-expressing corn compared with all other Bt-expressing corn, and larvae that survived eCry3.1Ab-expressing corn had significantly smaller head capsule widths compared with larvae that survived Cry34/35Ab1-expressing corn. In seedling assays, larvae surviving eCry3.1Ab-expressing corn also had significantly smaller head capsule widths compared with larvae that survived mCry3A-expressing corn. Additionally, larvae that survived mCry3A-expressing corn weighed significantly more than larvae surviving eCry3.1Ab- and Cry34/35Ab1-expressing corn. In single plant assays, no significant differences in larval dry weight was observed between any of the Bt-expressing corn. In diet assays, LC50s ranged from 0.14 (eCry3.1Ab) to 10.6 µg/cm2 (Cry34/35Ab1), EC50s ranged from 0.12 (Cry34/35Ab1) to 1.57 µg/cm2 (mCry3A), IC50s ranged from 0.08 (eCry3.1Ab) to 2.41 µg/cm2 (Cry34/35Ab1), and MIC50s ranged from 2.52 (eCry3.1Ab) to 14.2 µg/cm2 (mCry3A). These results establish the toxicity of four Bt proteins to a laboratory diapausing NCR strain established prior to the introduction of Bt traits and are important for monitoring resistance evolution in NCR field populations.


Subject(s)
Bacillus thuringiensis , Coleoptera , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins , Coleoptera/genetics , Diet , Endotoxins , Hemolysin Proteins , Laboratories , Larva , Pest Control, Biological , Plants, Genetically Modified/genetics , Seedlings , Zea mays/genetics
3.
Reprod Toxicol ; 91: 131-141, 2020 01.
Article in English | MEDLINE | ID: mdl-31756437

ABSTRACT

Bisphenol A (BPA) is a contaminant in virtually all Americans. To examine BPA's adverse effects, the FDA-NCTR, NIEHS, and 14 groups of academic scientists formed a consortium: CLARITY-BPA. The purpose of our study was to investigate the effects of a wide range of doses of BPA on fetal development of the NCTR CD-SD male rat urogenital sinus (UGS). Pregnant rats were administered BPA or positive control ethinylestradiol (EE2) daily, via oral gavage, from gestational day 6 through parturition. Tissues were collected on postnatal day 1 and the UGS was analyzed using computer-assisted 3-D reconstruction. Importantly, only low doses of BPA, as well as EE2, significantly changed birth weight and UGS morphology, including an increased size of the colliculus and decreased size of the urethra, consistent with prior reported BPA and EE2 effects. Our findings provide further evidence that BPA mediates nonmonotonic developmental effects on the fetal urogenital sinus.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Phenols/toxicity , Urogenital Abnormalities/chemically induced , Animals , Female , Fetal Development/drug effects , Fetus , Humans , Male , Maternal-Fetal Exchange , Pregnancy , Rats, Sprague-Dawley
4.
J Econ Entomol ; 112(6): 2737-2743, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31550358

ABSTRACT

The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), is one of the most important insect pests in the U.S. Corn Belt. Efforts to obtain eggs from wild northern corn rootworm populations using techniques developed for other rootworm species have been unsuccessful due to lack of oviposition. In 2016, we evaluated four oviposition media in choice tests within each of three female densities in 30.5 × 30.5 × 30.5 cm BugDorm cages. The number of eggs laid per female was significantly affected by female density and the interaction of female density × oviposition media, but oviposition was relatively poor in all oviposition media (1.2 eggs per female when averaging the three female densities and all oviposition media). Single females were also evaluated in nonchoice assays in 6 cm × 6 cm × 8 cm clear plastic boxes and averaged up to 108 eggs per female depending on the oviposition media. In 2017, the cumulative number of eggs laid per female in boxes with one female was not significantly different from the number of eggs laid per female in boxes with 3 females. In 2018, the cumulative number of eggs laid per female was not significantly different between female densities of 1, 3, 5, or 10 females per box. Total egg production per box therefore increased as female density increased. More than 27,000 wild northern corn rootworm eggs were collected from just 190 females when collected relatively early in the field season. We now have an efficient and robust system for obtaining eggs from wild northern corn rootworm females.


Subject(s)
Coleoptera , Animals , Female , Oviposition , Plants, Genetically Modified , Zea mays
5.
Proc Natl Acad Sci U S A ; 116(10): 4336-4345, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30787190

ABSTRACT

We describe a model for early onset preeclampsia (EOPE) that uses induced pluripotent stem cells (iPSCs) generated from umbilical cords of EOPE and control (CTL) pregnancies. These iPSCs were then converted to placental trophoblast (TB) representative of early pregnancy. Marker gene analysis indicated that both sets of cells differentiated at comparable rates. The cells were tested for parameters disturbed in EOPE, including invasive potential. Under 5% O2, CTL TB and EOPE TB lines did not differ, but, under hyperoxia (20% O2), invasiveness of EOPE TB was reduced. RNA sequencing analysis disclosed no consistent differences in expression of individual genes between EOPE TB and CTL TB under 20% O2, but, a weighted correlation network analysis revealed two gene modules (CTL4 and CTL9) that, in CTL TB, were significantly linked to extent of TB invasion. CTL9, which was positively correlated with 20% O2 (P = 0.02) and negatively correlated with invasion (P = 0.03), was enriched for gene ontology terms relating to cell adhesion and migration, angiogenesis, preeclampsia, and stress. Two EOPE TB modules, EOPE1 and EOPE2, also correlated positively and negatively, respectively, with 20% O2 conditions, but only weakly with invasion; they largely contained the same sets of genes present in modules CTL4 and CTL9. Our experiments suggest that, in EOPE, the initial step precipitating disease is a reduced capacity of placental TB to invade caused by a dysregulation of O2 response mechanisms and that EOPE is a syndrome, in which unbalanced expression of various combinations of genes affecting TB invasion provoke disease onset.


Subject(s)
Placenta/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Bone Morphogenetic Protein 4/metabolism , Cell Adhesion , Cell Movement , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Induced Pluripotent Stem Cells , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Oxidative Stress , Oxygen/pharmacology , Pregnancy , Transcriptome
6.
Heliyon ; 4(6): e00672, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30003164

ABSTRACT

Bisphenol A (BPA) is a pervasive industrial chemical used in many common household items. To examine how early exposure to BPA and ethinyl estradiol (EE, estrogen in birth control pill) might affect biparental care, effects of these chemicals in male and female California mice (Peromyscus californicus), who are monogamous and biparental, were examined. California mice exposed during pre- and peri-natal life to BPA at an environmentally relevant concentration or EE show later disrupted biparental behaviors. The hypothalamus is an important brain region for regulating parental behaviors. Thus, it was hypothesized compromised biparental care might be partially due to hypothalamic gene alterations. To address this question, brains from F1 parenting female and male California mice from controls, BPA- and EE-exposed groups were collected at postnatal day (PND) 2, and RNA was isolated from hypothalamic micropunches. Gene expression was examined in this brain region for genes affected by BPA exposure and attributed to governing parental care in rodents and humans. BPA-exposed California mice showed increased hypothalamic expression of Kiss1, Esr1 and Esr2 relative to AIN control and EE-exposed parents in the case of Esr2. Notably, current studies represent the first report to show that early exposure to BPA can induce longstanding effects on hypothalamic gene expression in parenting male and female rodents. Absence of such hypothalamic gene expression changes in EE-exposed parents indicates early BPA exposure may induce later transcriptomic effects through estrogen receptor-independent pathways. BPA-driven changes in hypothalamic function of California mice might contribute to decreased biparental investment, which could result in F2 multigenerational effects.

7.
Epigenetics ; 13(7): 704-720, 2018.
Article in English | MEDLINE | ID: mdl-30001178

ABSTRACT

Bisphenol A (BPA), an endocrine disrupting chemical (EDC), is a ubiquitous pollutant. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether exposure of Sprague-Dawley rats to 2,500 µg/kg/day BPA (BPA) or 0.5 µg/kg/day ethinyl estradiol (EE) from gestational day 6 through postnatal day 21 induces behavior-relevant gene expression and DNA methylation changes in hippocampus and hypothalamus at adulthood. RNA and DNA were isolated from both regions. Expression of ten genes (Dnmt1, Dnmt3a, Dnmt3b, Esr1, Esr2, Avp, Ar, Oxt, Otr, and Bdnf) presumably altered by early-life BPA/EE exposure was examined. Three genes (Bdnf, Dnmt3b, and Esr1) were studied for DNA methylation changes in their putative 5' promoter regions. Molecular changes in hippocampus were correlated to prior Barnes maze performance, including sniffing correct holes, distance traveled, and velocity. Exposure to BPA and/or EE disrupted patterns of sexually dimorphic gene expression/promoter DNA methylation observed in hippocampus and hypothalamus of controls. In the hippocampus of female offspring, BPA exposure resulted in hypermethylation of the putative 5' promoter region of Bdnf, while EE exposure induced hypomethylation. Bdnf methylation was weakly associated with Bdnf expression in hippocampi of female rats. Hippocampal Bdnf expression in females showed a weak negative association with sniffing correct hole in Barnes maze. Hippocampal expression of Avp, Esr2, Oxt, and Otr was strongly associated with velocity of control rats in Barnes maze. Findings suggest BPA exposure induced non-EE-like gene expression and epigenetic changes in adult rat hippocampi, a region involved in spatial navigation.


Subject(s)
Benzhydryl Compounds/toxicity , DNA Methylation/drug effects , Endocrine Disruptors/toxicity , Ethinyl Estradiol/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/pathology , Animals , Animals, Newborn , Behavior, Animal/drug effects , Estrogens/pharmacology , Female , Hippocampus/metabolism , Hippocampus/pathology , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy , Prenatal Exposure Delayed Effects/genetics , Rats , Rats, Sprague-Dawley
8.
PLoS One ; 13(6): e0199107, 2018.
Article in English | MEDLINE | ID: mdl-29912934

ABSTRACT

Rodent pups use vocalizations to communicate with one or both parents in biparental species, such as California mice (Peromyscus californicus). Previous studies have shown California mice developmentally exposed to endocrine disrupting chemicals, bisphenol A (BPA) or ethinyl estradiol (EE), demonstrate later compromised parental behaviors. Reductions in F1 parental behaviors might also be due to decreased emissions of F2 pup vocalizations. Thus, vocalizations of F2 male and female California mice pups born to F1 parents developmentally exposed to BPA, EE, or controls were examined. Postnatal days (PND) 2-4 were considered early postnatal period, PND 7 and 14 were defined as mid-postnatal period, and PND 21 and 28 were classified as late postnatal period. EE pups showed increased latency to emit the first syllable compared to controls. BPA female pups had decreased syllable duration compared to control and EE female pups during the early postnatal period but enhanced responses compared to controls at late postnatal period; whereas, male BPA and EE pups showed greater syllable duration compared to controls during early postnatal period. In mid-postnatal period, F2 BPA and EE pups emitted greater number of phrases than F2 control pups. Results indicate aspects of vocalizations were disrupted in F2 pups born to F1 parents developmentally exposed to BPA or EE, but their responses were not always identical, suggesting BPA might not activate estrogen receptors to the same extent as EE. Changes in vocalization patterns by F2 pups may be due to multigenerational exposure to BPA or EE and/or reduced parental care received.


Subject(s)
Benzhydryl Compounds/adverse effects , Endocrine Disruptors/adverse effects , Ethinyl Estradiol/adverse effects , Phenols/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Vocalization, Animal/drug effects , Animals , Animals, Newborn/psychology , Female , Male , Peromyscus , Pregnancy
9.
J Endocrinol ; 234(3): 301-313, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28676524

ABSTRACT

The fetal period represents an important window of susceptibility for later obesity and metabolic disease. Maternal vitamin D deficiency (VDD) during pregnancy is a global concern that may have long-lasting consequences on offspring metabolic health. We sought to determine whether a VDD in utero environment affects fetal adipose tissue development and offspring metabolic disease predisposition in adulthood. Furthermore, we sought to explore the extent to which the VDD intrauterine environment interacts with genetic background or postnatal environment to influence metabolic health. Eight-week-old P0 female C57BL/6J mice were fed either a VDD diet or sufficient diet (VDS) from four weeks before pregnancy (periconception) then bred to male Avy/a mice. Females were maintained on the diets throughout gestation. At weaning, Avy/a and a/a male F1 offspring were randomized to low-fat (LFD) or high-fat diet (HFD) until 19 weeks of age, at which point serum and adipose tissue were harvested for analyses. Mice born to VDD dams weighed less at weaning than offspring born to VDS dams but experienced rapid weight gain in the four weeks post weaning, and acquired a greater ratio of perigonadal (PGAT) to subcutaneous (SQAT) than control offspring. Additionally, these mice were more susceptible to HFD-induced adipocyte hypertrophy. Offspring of VDD dams also had greater expression of Pparg transcript. These novel findings demonstrate that in utero VDD, an easily correctable but highly prevalent health concern, predisposes offspring to long-term adipose tissue consequences and possible adverse metabolic health complications.


Subject(s)
Adipose Tissue/metabolism , Prenatal Exposure Delayed Effects/metabolism , Vitamin D Deficiency/embryology , Animals , Disease Susceptibility , Female , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Vitamin D/metabolism , Vitamin D Deficiency/genetics , Vitamin D Deficiency/metabolism
10.
Sci Rep ; 7(1): 2822, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588204

ABSTRACT

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Metal Nanoparticles/adverse effects , Aggregatibacter/drug effects , Animals , Bacteroides/drug effects , Brain/drug effects , Brain/physiopathology , Clostridium/drug effects , Corynebacterium/drug effects , Dysbiosis/chemically induced , Dysbiosis/physiopathology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/physiopathology , Humans , Metal Nanoparticles/administration & dosage , Peptococcus/drug effects , Rats , Rats, Sprague-Dawley
12.
J Comp Psychol ; 131(1): 30-39, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28182483

ABSTRACT

Rodent species, such as monogamous and biparental California mice, produce vocalizations as a means of communication. A temporal examination of vocalizations produced by California mice pups in isolation was performed. Pup recordings were performed for 3 min at ∼10.00 and 14.00 hrs on early postnatal days (PND) 2-4, 7, 21, and 28. Once initial recordings were finished, pups were returned to the home cage with parents and any siblings for 5 minutes to determine if active biparental responses resulted in an enhanced vocalization response when pups were isolated and retested. We also sought to determine whether potential reduction in vocalizations by older pups might be due to procedure-habituation procedure associated with less anxiety and/or possibly decreased need for parental care. Vocalizations were measured in weanling (30 days of age) "naïve" pups not previously isolated. Results show older pups took significantly longer to vocalize, indicated by increased latency before producing their initial syllable compared to earlier ages. With increasing age, pups demonstrated decreased syllable duration, reduced number and duration of phrases, and decreased number of syllables per phrase. No differences in pup vocalizations were observed before and after being placed back with parents, suggestive biparental potentiation may not exist in California mice pups. Comparison of the naïve to habituated weanling pups indicated the former group had more total calls but no other differences in vocalization parameters were detected between these 2 groups. Collectively, the findings suggest that as California mice pups mature and approach weaning they generally vocalize less in isolation. (PsycINFO Database Record


Subject(s)
Animals, Newborn , Behavior, Animal , Vocalization, Animal , Animals , California , Mice , Peromyscus , Social Behavior
13.
Sci Total Environ ; 579: 1804-1814, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27932218

ABSTRACT

Bisphenol A (BPA) is a widely present endocrine disruptor chemical found in many household items. Moreover, this chemical can bioaccumulate in various terrestrial and aquatic sources; thereby ensuring continual exposure of animals and humans. For most species, including humans, diet is considered the primary route of exposure. However, there has been little investigation whether commercial-brands of dog foods contain BPA and potential health ramifications of BPA-dietary exposure in dogs. We sought to determine BPA content within dog food, whether short-term consumption of these diets increases serum concentrations of BPA, and potential health consequences, as assessed by potential hematological, serum chemistry, cortisol, DNA methylation, and gut microbiome changes, in dogs associated with short-term dietary exposure to BPA. Fourteen healthy privately-owned dogs were used in this study. Blood and fecal samples were collected prior to dogs being placed for two-weeks on one of two diets (with one considered to be BPA-free), and blood and fecal samples were collected again. Serum/plasma samples were analyzed for chemistry and hematology profiles, cortisol concentrations, 5-methylcytosine in lymphocytes, and total BPA concentrations. Fecal samples were used for microbiome assessments. Both diets contained BPA, and after two-weeks of being on either diet, dogs had a significant increase in circulating BPA concentrations (pre-samples=0.7±0.15ng/mL, post-samples=2.2±0.15ng/mL, p<0.0001). Elevated BPA concentrations positively correlated with increased plasma bicarbonate concentrations and associated with fecal microbiome alterations. Short-term feeding of canned dog food increased circulating BPA concentrations in dogs comparable to amounts detected in humans, and greater BPA concentrations were associated with serum chemistry and microbiome changes. Dogs, who share our internal and external environments with us, are likely excellent indicators of potential human health concerns to BPA and other environmental chemicals. These findings may also have relevance to aquatic and terrestrial wildlife.


Subject(s)
Benzhydryl Compounds/blood , Dietary Exposure/analysis , Endocrine Disruptors/blood , Food Contamination/analysis , Food, Preserved/analysis , Phenols/blood , Animals , Benzhydryl Compounds/toxicity , Dogs/blood , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Food Contamination/statistics & numerical data , Pets/blood , Phenols/toxicity
14.
Proc Natl Acad Sci U S A ; 113(47): 13522-13527, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821779

ABSTRACT

During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.


Subject(s)
Femur/physiopathology , Myostatin/metabolism , Osteogenesis Imperfecta/physiopathology , Animals , Biomarkers/blood , Biomechanical Phenomena , Body Weight , Collagen/metabolism , Disease Models, Animal , Embryo Implantation , Female , Femur/pathology , Male , Mice, Inbred C57BL , Muscle Contraction , Myostatin/deficiency , Osteoblasts/metabolism , Osteogenesis Imperfecta/blood , Osteogenesis Imperfecta/embryology , Tibia/pathology , Tibia/physiopathology
15.
Horm Behav ; 85: 48-55, 2016 09.
Article in English | MEDLINE | ID: mdl-27476434

ABSTRACT

Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26°C (male-inducing temperature) were treated with 1) BPA High (100µg /mL), 2) BPA Low (0.01µg/mL), 3) EE2 (0.2µg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles.


Subject(s)
Benzhydryl Compounds/pharmacology , Ethinyl Estradiol/pharmacology , Learning/drug effects , Memory/drug effects , Phenols/pharmacology , Spatial Navigation/drug effects , Turtles/physiology , Animal Migration/drug effects , Animals , Endocrine Disruptors/pharmacology , Environmental Exposure/adverse effects , Female , Gonads/drug effects , Male , Sex Differentiation/drug effects , Testis/drug effects
16.
Endocrinology ; 157(7): 2636-48, 2016 07.
Article in English | MEDLINE | ID: mdl-27145007

ABSTRACT

Maternal obesity and gestational diabetes are prevalent worldwide. Offspring of mothers with these conditions weigh more and are predisposed to metabolic syndrome. A hallmark of both conditions is maternal hyperleptinemia, but the role of elevated leptin levels during pregnancy on developmental programming is largely unknown. We previously found that offspring of hyperleptinemic mothers weighed less and had increased activity. The goal of this study was to determine whether maternal leptin affects offspring insulin sensitivity by investigating offspring glucose metabolism and lipid accumulation. Offspring from two maternal hyperleptinemic models were compared. The first model of hyperleptinemia is the Lepr(db/+) mouse, which has a mutation in one copy of the gene that encodes the leptin receptor, resulting in a truncated long form of the receptor, and hyperleptinemia. Wild-type females served as the control for the Lepr(db/+) females. For the second hyperleptinemic model, wild-type females were implanted with miniosmotic pumps, which released leptin (350 ng/h) or saline (as the control) just prior to mating and throughout gestation. In the offspring of these dams, we measured glucose tolerance; serum leptin, insulin, and triglyceride levels; liver triglycerides; pancreatic α- and ß-cell numbers; body composition; incidence of nonalcoholic fatty liver disease; and the expression of key metabolic genes in the liver and adipose tissue. We found that the offspring of hyperleptinemic dams exhibited improved glucose tolerance, reduced insulin and leptin concentrations, reduced liver triglycerides, and a lower incidence of nonalcoholic fatty liver disease. Overall, maternal hyperleptinemia was beneficial for offspring glucose and lipid metabolism.


Subject(s)
Insulin Resistance/physiology , Leptin/blood , Non-alcoholic Fatty Liver Disease/metabolism , Prenatal Exposure Delayed Effects/metabolism , Receptors, Leptin/metabolism , Animals , Female , Insulin/metabolism , Leptin/pharmacology , Liver/metabolism , Mice , Mutation , Pancreas/metabolism , Pregnancy , Receptors, Leptin/genetics , Triglycerides/metabolism
17.
J Econ Entomol ; 109(3): 1387-1398, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27106225

ABSTRACT

Minnesota populations of Diabrotica virgifera virgifera LeConte, the western corn rootworm, surviving Cry3Bb1-expressing corn in the field and western corn rootworm populations assumed to be susceptible to all Bt proteins were evaluated for susceptibility to Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1 in diet assays and three different plant-based assays. Rootworm populations originating from Cry3Bb1 fields and that consistently experienced greater than expected damage had increased survival and larval growth compared to control populations assayed on Cry3Bb1 as well as mCry3a and eCry3.1Ab. Cross resistance was documented between Cry3Bb1 and both mCry3A and eCry3.1Ab as single toxins. Despite very high resistance ratios in some comparisons, cross resistance was not complete and also varied with the population being evaluated, the trait measured, and the susceptible rootworm population used for comparison. Regardless of resistance and cross resistance, all proteins, even Cry3Bb1, retained some efficacy in terms of either reducing rootworm larval growth, protecting plants from damage, or both, for all rootworm populations evaluated. For one Cry3Bb1-selected population, a resistance ratio of 9.1-fold was found to Cry34/35Ab1 when evaluating EC 50 values relative to a susceptible control population; however, resistance to Cry34/35Ab1 was not evident in all assays in this population. The United States Environmental Protection Agency recently suggested eliminating diet assays as part of the Bt resistance monitoring process. However, given the variability of responses of western corn rootworm populations to different proteins in different assays, both plant and diet assays are needed as options for detecting and fully characterizing resistance.

19.
Sci Rep ; 6: 23027, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26971397

ABSTRACT

Bacteria harbored in the male reproductive system may influence reproductive function and health of the male and result in developmental origins of adult health and disease (DOHaD) effects in his offspring. Such effects could be due to the seminal fluid, which is slightly basic and enriched with carbohydrates; thereby, creating an ideal habitat for microbes or a potential seminal fluid microbiome (SFM). Using wild-type (WT) and estrogen receptor-alpha (ESR1) knockout (KO) male mice, we describe a unique SFM whose inhabitants differ from gut microbes. The bacterial composition of the SFM is influenced according to whether mice have functional Esr1 genes. Propionibacterium acnes, causative agent of chronic prostatitis possibly culminating in prostate cancer, is reduced in SFM of ESR1 KO compared to WT mice (P ≤ 0.0007). In certain genetic backgrounds, WT mice show a greater incidence of prostate cancer than ESR1 KO, which may be due to increased abundance of P. acnes. Additionally, select gut microbiome residents in ESR1 KO males, such as Lachnospiraceae and Christensenellaceae, might contribute to previously identified phenotypes, especially obesity, in these mutant mice. Understanding how genetics and environmental factors influence the SFM may provide the next frontier in male reproductive disorders and possibly paternal-based DOHaD diseases.


Subject(s)
Bacteria/metabolism , Estrogen Receptor alpha/deficiency , Microbiota/physiology , Semen/microbiology , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Estrogen Receptor alpha/genetics , Feces/microbiology , Firmicutes/physiology , Genotype , Host-Pathogen Interactions , Male , Metabolic Networks and Pathways/genetics , Mice, Knockout , Microbiota/genetics , Obesity/genetics , Obesity/microbiology , Propionibacterium acnes/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Environ Entomol ; 45(2): 526-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26834186

ABSTRACT

mCry3A is one of only four proteins licensed for commercial use in Diabrotica control. Utilizing a colony of western corn rootworm, Diabrotica virgifera virgifera LeConte, selected for resistance to mCry3A, we evaluated how mCry3A resistance was inherited and whether fitness costs were associated with mCry3A resistance. Reciprocal crosses between a selected colony and a control colony were performed; resulting progeny along with parent colonies were evaluated in dose toxicity assays, greenhouse assays, and seedling assays. Dose toxicity assay results were inconclusive, as the highest dose of protein tested did not produce sufficient mortality for accurate LC50 calculation. In whole-plant greenhouse assays on mCry3A-expressing corn, larval relative survival of the selected female × control male reciprocal cross was similar to that of the selected colony, while that of the control female × selected male was intermediate between the mCry3-selected colony and the control colony. However, when adult relative survival in whole-plant greenhouse assays was examined, no significant difference between the reciprocal crosses and the two parent colonies was detected. Heritability calculations based on both larval (0.66) and adult (1.03) survival data indicate that resistance to mCry3A is not inherited in a recessive manner. The selected colony was removed from selection pressure and evaluated after three or eight generations of removal. At three generations of removal from selection, a slight decrease in larval relative survival was detected compared with the selected colony. At eight generations of removal from selection, larval relative survival was comparable with that of the selected colony.


Subject(s)
Bacterial Proteins/pharmacology , Coleoptera/drug effects , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Plants, Genetically Modified/chemistry , Zea mays/chemistry , Animals , Bacillus thuringiensis Toxins , Coleoptera/growth & development , Female , Larva/drug effects , Larva/genetics , Male , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...