Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 113(41): E6064-E6071, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27681620

ABSTRACT

Gram-negative bacteria possess a characteristic outer membrane, of which the lipid A constituent elicits a strong host immune response through the Toll-like receptor 4 complex, and acts as a component of the permeability barrier to prevent uptake of bactericidal compounds. Lipid A species comprise the bulk of the outer leaflet of the outer membrane and are produced through a multistep biosynthetic pathway conserved in most Gram-negative bacteria. The final steps in this pathway involve the secondary acylation of lipid A precursors. These are catalyzed by members of a superfamily of enzymes known as lysophospholipid acyltransferases (LPLATs), which are present in all domains of life and play important roles in diverse biological processes. To date, characterization of this clinically important class of enzymes has been limited by a lack of structural information and the availability of only low-throughput biochemical assays. In this work, we present the structure of the bacterial LPLAT protein LpxM, and we describe a high-throughput, label-free mass spectrometric assay to characterize acyltransferase enzymatic activity. Using our structure and assay, we identify an LPLAT thioesterase activity, and we provide experimental evidence to support an ordered-binding and "reset" mechanistic model for LpxM function. This work enables the interrogation of other bacterial acyltransferases' structure-mechanism relationships, and the assay described herein provides a foundation for quantitatively characterizing the enzymology of any number of clinically relevant LPLAT proteins.


Subject(s)
Acyltransferases/chemistry , Acyltransferases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Consensus Sequence , Enzyme Activation , Gram-Negative Bacteria , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Position-Specific Scoring Matrices , Protein Binding , Protein Conformation , Structure-Activity Relationship , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism
2.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25327288

ABSTRACT

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Subject(s)
Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Ferritins/metabolism , Homeostasis/physiology , Iron/metabolism , Nuclear Receptor Coactivators/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Humans , Lysosomes/metabolism , Mice , Phagosomes/metabolism , Protein Binding
3.
Bioorg Med Chem Lett ; 21(10): 3078-83, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21459573

ABSTRACT

We report the use of a fragment-based lead discovery method, Tethering with extenders, to discover a pyridinone fragment that binds in an adaptive site of the protein PDK1. With subsequent medicinal chemistry, this led to the discovery of a potent and highly selective inhibitor of PDK1, which binds in the 'DFG-out' conformation.


Subject(s)
Drug Design , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/chemistry , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Models, Biological , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(17): 5158-61, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19646866

ABSTRACT

This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.


Subject(s)
Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Aurora Kinases , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 18(20): 5648-52, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18793847

ABSTRACT

A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Cell Cycle , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Phenotype , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Polo-Like Kinase 1
7.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 9): 909-18, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18703838

ABSTRACT

Polo-like kinase 1 (Plk1) is a member of a family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. A zebrafish homolog of the human Plk1 (hPlk1) kinase domain (KD) was identified that can be expressed in large quantities in bacteria and crystallizes readily, whether in a wild-type form or as a variant containing the activating Thr196-->Asp substitution, in one space group and under similar conditions both in the absence and presence of active-site compounds. This construct was validated by testing a panel of hPlk1 inhibitors against human and zebrafish proteins and it was shown that the selected small molecules inhibited the homologs with a high degree of correlation. Crystal structures of ligand-free wild-type and activated zebrafish Plk1 (zPlk1) KDs revealed the organization of the secondary structural elements around the active site and demonstrated that the activation segment was disordered in the activated form of the domain but possessed a well defined secondary structure in the wild-type enzyme. The cocrystal structure of wild-type zPlk1 KD with ADP documented the hydrolysis of ATP and revealed the phosphorylation site. The cocrystal structure of the activated KD with wortmannin, a covalent inhibitor of Plk1 and PI3 kinases, showed the binding mode of the small molecule to the enzyme and may facilitate the design of more potent Plk1 inhibitors. The work presented in this study establishes the zPlk1 KD as a useful tool for rapid low- and high-throughput structure-based screening and drug discovery of compounds specific for this mitotic target.


Subject(s)
Catalytic Domain , Cell Cycle Proteins/chemistry , Protein Serine-Threonine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , Zebrafish Proteins/chemistry , Adenosine Diphosphate/chemistry , Amino Acid Sequence , Amino Acid Substitution , Androstadienes/chemistry , Animals , Binding Sites , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Crystallization , Crystallography, X-Ray , Humans , Kinetics , Ligands , Models, Molecular , Protein Conformation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Wortmannin , Zebrafish , Polo-Like Kinase 1
8.
Bioorg Med Chem Lett ; 18(17): 4880-4, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18678489

ABSTRACT

This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.


Subject(s)
Neoplasms, Experimental/drug therapy , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinases , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Mice , Neoplasm Transplantation , Neoplasms, Experimental/enzymology , Quinazolines/chemistry , Structure-Activity Relationship
9.
Article in English | MEDLINE | ID: mdl-18678933

ABSTRACT

Polo-like kinase 1 (Plk1) is a member of the Polo-like kinase family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. The catalytic domain of this enzyme shares significant primary amino-acid homology and structural similarity with another mitotic kinase, Aurora A. While screening an Aurora A library of ATP-competitive compounds, a urea-containing inhibitor with low affinity for mouse Aurora A but with submicromolar potency for human and zebrafish Plk1 (hPlk1 and zPlk1, respectively) was identified. A crystal structure of the zebrafish Plk1 kinase domain-inhibitor complex reveals that the small molecule occupies the purine pocket and extends past the catalytic lysine into the adaptive region of the active site. Analysis of the structures of this protein-inhibitor complex and of similar small molecules cocrystallized with other kinases facilitates understanding of the specificity of the inhibitor for Plk1 and documents for the first time that Plk1 can accommodate extended ATP-competitive compounds that project toward the adaptive pocket and help the enzyme order its activation segment.


Subject(s)
Cell Cycle Proteins/chemistry , Protein Serine-Threonine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , Zebrafish Proteins/chemistry , Zebrafish/metabolism , Animals , Base Sequence , Catalytic Domain , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Crystallography, X-Ray , DNA Primers , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Substrate Specificity , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Polo-Like Kinase 1
10.
Protein Expr Purif ; 54(1): 139-46, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17434748

ABSTRACT

Aurora kinases have recently become some of the most intensely pursued oncology targets for the design of small-molecule inhibitors. Most of the active Aurora-A protein variants are currently being expressed from baculoviruses in insect cells, while catalytically impaired proteins can also be generated in and purified from Escherichia coli. In this study we present a method of expressing large quantities of active mouse Aurora-A kinase domain as an N-terminal glutathione-S-transferase fusion protein in bacteria and outline a simple purification method that produces greater than 99% pure protein samples suitable for enzymatic assays and X-ray crystallography. The methods described in this report simplify mouse Aurora-A expression and purification, and may aid in the production of other difficult kinases in prokaryotes.


Subject(s)
Protein Serine-Threonine Kinases/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Animals , Aurora Kinase A , Aurora Kinases , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Glutathione Transferase/genetics , Mice , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/chemistry
11.
Biochem J ; 400(1): 105-14, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16813561

ABSTRACT

The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2'-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.


Subject(s)
Alcohol Oxidoreductases/metabolism , NAD/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Aldehyde Reductase , Aldo-Keto Reductases , Amino Acid Sequence , Animals , Catalysis , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation/genetics , NADP/metabolism , Protein Binding , Protein Conformation , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/genetics , Substrate Specificity , Sulfolobus solfataricus/enzymology , Sulfolobus solfataricus/genetics , Thermotoga maritima/enzymology , Thermotoga maritima/genetics
12.
Structure ; 14(3): 567-75, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16531240

ABSTRACT

Xylitol dehydrogenase (XDH) is one of several enzymes responsible for assimilating xylose into eukaryotic metabolism and is useful for fermentation of xylose contained in agricultural byproducts to produce ethanol. For efficient xylose utilization at high flux rates, cosubstrates should be recycled between the NAD+-specific XDH and the NADPH-preferring xylose reductase, another enzyme in the pathway. To understand and alter the cosubstrate specificity of XDH, we determined the crystal structure of the Gluconobacter oxydans holoenzyme to 1.9 angstroms resolution. The structure reveals that NAD+ specificity is largely conferred by Asp38, which interacts with the hydroxyls of the adenosine ribose. Met39 stacked under the purine ring and was also located near the 2' hydroxyl. Based on the location of these residues and on sequence alignments with related enzymes of various cosubstrate specificities, we constructed a double mutant (D38S/M39R) that was able to exclusively use NADP+, with no loss of activity.


Subject(s)
D-Xylulose Reductase/chemistry , Gluconobacter/enzymology , Holoenzymes/chemistry , Carrier Proteins/metabolism , Catalytic Domain , D-Xylulose Reductase/genetics , Magnesium/metabolism , Metals/metabolism , Models, Molecular , Mutation , NAD/metabolism , NADP/metabolism , NADP/pharmacokinetics , Phosphate-Binding Proteins , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae , Structure-Activity Relationship , Substrate Specificity , Xylose/metabolism
13.
Bioorg Med Chem Lett ; 15(11): 2938-42, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911284

ABSTRACT

An enzyme labeling and screening strategy for the discovery of ligands selective in binding two structurally similar members of the aldo-keto reductase family of enzymes is reported. The resulting fluorescence microscope data obtained by screening a 74,088 member library led to the identification of selective ligands for aldose reductase (ALR2) and aldehyde reductase (ALR1). Resynthesis results validate the selectivity of these ligands.


Subject(s)
Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Aldehyde Reductase/metabolism , Aldo-Keto Reductases , Ligands , Microscopy, Fluorescence , Models, Molecular
14.
Biochemistry ; 43(4): 879-89, 2004 Feb 03.
Article in English | MEDLINE | ID: mdl-14744130

ABSTRACT

While within a human host the opportunistic pathogen Toxoplasma gondii relies heavily on glycolysis for its energy needs. Lactate dehydrogenase (LDH), the terminal enzyme in anaerobic glycolysis necessary for NAD(+) regeneration, therefore represents an attractive therapeutic target. The tachyzoite stage lactate dehydrogenase (LDH1) from the parasite T. gondii has been crystallized in apo form and in ternary complexes containing NAD(+) or the NAD(+)-analogue 3-acetylpyridine adenine dinucleotide (APAD(+)) and sulfate or the inhibitor oxalate. Comparison of the apo and ternary models shows an active-site loop that becomes ordered upon substrate binding. This active-site loop is five residues longer than in most LDHs and necessarily adopts a different conformation. While loop isomerization is fully rate-limiting in prototypical LDHs, kinetic data suggest that LDH1's rate is limited by chemical steps. The importance of charge neutralization in ligand binding is supported by the complexes that have been crystallized as well as fluorescence quenching experiments performed with ligands at low and high pH. A methionine that replaces a serine residue and displaces an ordered water molecule often seen in LDH structures provides a structural explanation for reduced substrate inhibition. Superimposition of LDH1 with human muscle- and heart-specific LDH isoforms reveals differences in residues that line the active site that increase LDH1's hydrophobicity. These differences will aid in designing inhibitors specific for LDH1 that may be useful in treating toxoplasmic encephalitis and other complications that arise in immune-compromised individuals.


Subject(s)
Coenzymes/chemistry , Isoenzymes/chemistry , L-Lactate Dehydrogenase/chemistry , NAD/analogs & derivatives , NAD/chemistry , Toxoplasma/enzymology , Animals , Apoenzymes/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/antagonists & inhibitors , L-Lactate Dehydrogenase/antagonists & inhibitors , Lactic Acid/chemistry , Muscle, Skeletal/enzymology , Myocardium/enzymology , Oxalic Acid/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Pyruvic Acid/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...