Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5420, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926341

ABSTRACT

As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in short c U 50 T is introduced. Analyzing a set of ene reductases, c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature and c U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots of c U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.


Subject(s)
Enzyme Stability , Protein Unfolding , Solvents , Solvents/chemistry , Temperature , Transition Temperature , Oxidoreductases/chemistry , Oxidoreductases/metabolism
2.
Sci Adv ; 7(52): eabk2392, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936443

ABSTRACT

The mitochondrial inner membrane ABC transporter Atm1 exports an unknown substrate to the cytosol for iron-sulfur protein biogenesis, cellular iron regulation, and tRNA thio-modification. Mutations in the human relative ABCB7 cause the iron storage disease XLSA/A. We determined 3D structures of two complementary states of Atm1 in lipid nanodiscs by electron cryo-microscopy at 2.9- to 3.4-Å resolution. The inward-open structure resembled the known crystal structure of nucleotide-free apo-Atm1 closely. The occluded conformation with bound AMP-PNP-Mg2+ showed a tight association of the two nucleotide-binding domains, a rearrangement of the C-terminal helices, and closure of the putative substrate-binding cavity in the homodimeric transporter. We identified a hydrophobic patch on the C-terminal helices of yeast Atm1, which is unique among type IV ABC transporters of known structure. Truncation mutants of yeast Atm1 suggest that the C-terminal helices stabilize the dimer, yet are not necessary for closure of the nucleotide-binding domains.

3.
Acta Crystallogr D Struct Biol ; 74(Pt 7): 702-710, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29968680

ABSTRACT

The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activity with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.


Subject(s)
Glycoside Hydrolases/chemistry , Protein Engineering/methods , Zinc/chemistry , Biocatalysis , Crystallography, X-Ray , Enzyme Stability , Mutant Proteins , Protein Binding , Temperature
4.
Integr Biol (Camb) ; 8(4): 542-5, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26611838

ABSTRACT

Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.


Subject(s)
Escherichia coli/genetics , Oryza/microbiology , Recombinant Proteins/biosynthesis , Synthetic Biology/methods , Tyrosine/analogs & derivatives , Agriculture/methods , Crop Protection/methods , Crops, Agricultural , Green Fluorescent Proteins/genetics , Oryza/genetics , Peptides/chemistry , Plasmids/metabolism , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL