Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645068

ABSTRACT

OrthoFusion, an intuitive super-resolution algorithm, is presented in this study to enhance the spatial resolution of clinical CT volumes. The efficacy of OrthoFusion is evaluated, relative to high-resolution CT volumes (ground truth), by assessing image volume and derived bone morphological similarity, as well as its performance in specific applications in 2D-3D registration tasks. Results demonstrate that OrthoFusion significantly reduced segmentation time, while improving structural similarity of bone images and relative accuracy of derived bone model geometries. Moreover, it proved beneficial in the context of biplane videoradiography, enhancing the similarity of digitally reconstructed radiographs to radiographic images and improving the accuracy of relative bony kinematics. OrthoFusion's simplicity, ease of implementation, and generalizability make it a valuable tool for researchers and clinicians seeking high spatial resolution from existing clinical CT data. This study opens new avenues for retrospectively utilizing clinical images for research and advanced clinical purposes, while reducing the need for additional scans, mitigating associated costs and radiation exposure.

2.
Spine J ; 24(1): 172-184, 2024 01.
Article in English | MEDLINE | ID: mdl-37611875

ABSTRACT

BACKGROUND CONTEXT: Etiology of adolescent idiopathic scoliosis (AIS) is still unknown. Prior in vitro research suggests intervertebral disc pathomorphology as a cause for the initiation and progression of the spinal deformity, however, this has not been well characterized in vivo. PURPOSE: To quantify and compare lumbar disc health and morphology in AIS to controls. STUDY DESIGN/SETTING: Cross-sectional study. METHODS: All lumbar discs were imaged using a 3T MRI scanner. T2-weighted and quantitative T2* maps were acquired. Axial slices of each disc were reconstructed, and customized scripts were used to extract outcome measurements: Nucleus pulposus (NP) signal intensity and location, disc signal volume, transition zone slope, and asymmetry index. Pearson's correlation analysis was performed between the NP location and disc wedge angle for AIS patients. ANOVAs were utilized to elucidate differences in disc health and morphology metrics between AIS patients and healthy controls. α=0.05. RESULTS: There were no significant differences in disc health metrics between controls and scoliotic discs. There was a significant shift in the NP location towards the convex side of the disc in AIS patients compared to healthy controls, with an associated increase of the transition zone slope on the convex side. Additionally, with increasing disc wedge angle, the NP center migrated towards the convex side of the disc. CONCLUSIONS: The present study elucidates morphological distinctions of intervertebral discs between healthy adolescents and those diagnosed with AIS. Discs in patients diagnosed with AIS are asymmetric, with the NP shifted towards the convex side, which was exacerbated by an increased disc wedge angle. CLINICAL SIGNIFICANCE: Investigation of the MRI signal distribution (T2w and T2* maps) within the disc suggests an asymmetric pressure gradient shifting the NP laterally towards the convexity. Quantifying the progression of these morphological alterations during maturation and in response to treatment will provide further insight into the mechanisms of curve progression and correction, respectively.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Kyphosis , Scoliosis , Humans , Adolescent , Scoliosis/diagnostic imaging , Cross-Sectional Studies , Intervertebral Disc/diagnostic imaging , Intervertebral Disc Degeneration/diagnostic imaging , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging
3.
J Biomech ; 162: 111900, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104381

ABSTRACT

The long head biceps tendon (LHBT) is presumed a common source of shoulder joint pain and injury. Despite common LHBT pathologies, diagnosis and preferred treatment remain frequently debated. This Short Communication reports the development of a subject-specific finite element model of the shoulder joint based on one subject's 3D reconstructed anatomy and 3D in vivo kinematics recorded from bone-fixed electromagnetic sensors. The primary purpose of this study was to use the developed finite element model to investigate the LHBT mechanical environment during a typical shoulder motion of arm raising. Furthermore, this study aimed to assess the viability of material models derived from uniaxial tensile tests for accurate simulation of in vivo motion. The findings of our simulations indicate that the LHBT undergoes complex multidimensional deformations. As such, uniaxial material properties reported in the existing body of literature are not sufficient to simulate accurately the in vivo mechanical behavior of the LHBT. Further experimental tests on cadaveric specimens, such as biaxial tension and combinations of tension and torsion, are needed to describe fully the mechanical behavior of the LHBT and investigate its mechanisms of injury.


Subject(s)
Shoulder Joint , Shoulder , Humans , Tendons , Muscle, Skeletal , Arm
4.
JOR Spine ; 6(3): e1269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37780821

ABSTRACT

Background: To understand the facet capsular ligament's (FCL) role in cervical spine mechanics, the interactions between the FCL and other spinal components must be examined. One approach is to develop a subject-specific finite element (FE) model of the lower cervical spine, simulating the motion segments and their components' behaviors under physiological loading conditions. This approach can be particularly attractive when a patient's anatomical and kinematic data are available. Methods: We developed and demonstrated methodology to create 3D subject-specific models of the lower cervical spine, with a focus on facet capsular ligament biomechanics. Displacement-controlled boundary conditions were applied to the vertebrae using kinematics extracted from biplane videoradiography during planar head motions, including axial rotation, lateral bending, and flexion-extension. The FCL geometries were generated by fitting a surface over the estimated ligament-bone attachment regions. The fiber structure and material characteristics of the ligament tissue were extracted from available human cervical FCL data. The method was demonstrated by application to the cervical geometry and kinematics of a healthy 23-year-old female subject. Results: FCL strain within the resulting subject-specific model were subsequently compared to models with generic: (1) geometry, (2) kinematics, and (3) material properties to assess the effect of model specificity. Asymmetry in both the kinematics and the anatomy led to asymmetry in strain fields, highlighting the importance of patient-specific models. We also found that the calculated strain field was largely independent of constitutive model and driven by vertebrae morphology and motion, but the stress field showed more constitutive-equation-dependence, as would be expected given the highly constrained motion of cervical FCLs. Conclusions: The current study provides a methodology to create a subject-specific model of the cervical spine that can be used to investigate various clinical questions by coupling experimental kinematics with multiscale computational models.

5.
Spine Deform ; 11(6): 1325-1333, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37382877

ABSTRACT

PURPOSE: To develop a modeling framework to predict the secondary consequences on spinal alignment following correction and to demonstrate the impact of pedicle subtraction osteotomy (PSO) location on sagittal alignment. METHODS: Six patients were included, and pelvic incidence (PI) was measured. Full-length standing radiographs were uploaded into PowerPoint and manipulated to model S1-S2 joint line sacral fractures at 15°, 20°, 25°, and 30°. PSO corrections with hinge points at the anterior superior corner and vertical midpoint of the L3-5 vertebral bodies were modeled. Anterior translation (AT) and vertical shortening (VS) were calculated for the six PSO locations in the four fracture angle (FA) models. RESULTS: PI had a strong effect in the mixed AT and VS models (P < 0.001). Both AT and VS were significantly different from zero at all FA (p < 0.001), and pairwise comparisons revealed all FA were different from each other with respect to both AT and VS after adjusting for PSO location (p < 0.001), increasing as FA increased. Varying PSO location resulted in significant differences in AT when comparing all locations (p < 0.001). AT was greatest for all FA in all patients when the PSO correction was performed at the L3-AS (p < 0.001). There were significant differences in VS when comparing the L5-Mid PSO location to the L3-AS, L3-Mid, L4-AS, and L4-Mid PSO locations (p < 0.034). CONCLUSION: PSO correction superior to a sacral fracture resulted in AT and VS of the spine. It is crucial that these changes in spinal measures be predicted and accounted for to optimize patient sagittal alignment and outcomes.

6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674887

ABSTRACT

The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Inflammation/metabolism , Intervertebral Disc Displacement/metabolism , Macrophages/metabolism
7.
J Biomech Eng ; 145(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36478033

ABSTRACT

Degeneration of the lumbar spine, and especially how that degeneration may lead to pain, remains poorly understood. In particular, the mechanics of the facet capsular ligament may contribute to low back pain, but the mechanical changes that occur in this ligament with spinal degeneration are unknown. Additionally, the highly nonlinear, heterogeneous, and anisotropic nature of the facet capsular ligament makes understanding mechanical changes more difficult. Clinically, magnetic resonance imaging (MRI)-based signs of degeneration in the facet joint and the intervertebral disc (IVD) correlate. Therefore, this study examined how the nonlinear, heterogeneous mechanics of the facet capsular ligament change with degeneration of the lumbar spine as characterized using MRI. Cadaveric human spines were imaged via MRI, and the L2-L5 facet joints and IVDs were scored using the Fujiwara and Pfirrmann grading systems. Then, the facet capsular ligament was isolated and biaxially loaded. The nonlinear mechanical properties of the ligament were obtained using a nonlinear generalized anisotropic inverse mechanics analysis (nGAIM). Then a Holzapfel-Gasser-Ogden (HGO) model was fit to the stress-strain data obtained from nGAIM. The facet capsular ligament is stiffer and more anisotropic at larger Pfirrmann grades and higher Fujiwara scores than at lower grades and scores. Analysis of ligament heterogeneity showed all tissues are highly heterogeneous, but no distinct spatial patterns of heterogeneity were found. These results show that degeneration of the lumbar spine including the facet capsular ligament appears to be occurring as a whole joint phenomenon and advance our understanding of lumbar spine degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Zygapophyseal Joint , Humans , Zygapophyseal Joint/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Lumbar Vertebrae/pathology , Magnetic Resonance Imaging , Ligaments, Articular
8.
Front Cell Dev Biol ; 11: 1286011, 2023.
Article in English | MEDLINE | ID: mdl-38274272

ABSTRACT

Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-ß signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-ß neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-ß-dependent mechanisms.

9.
J Biomech Eng ; 144(6)2022 06 01.
Article in English | MEDLINE | ID: mdl-35237790

ABSTRACT

The lumbar facet capsular ligament, which surrounds and limits the motion of each facet joint in the lumbar spine, has been recognized as being mechanically significant and has been the subject of multiple mechanical characterization studies in the past. Those studies, however, were performed on isolated tissue samples and thus could not assess the mechanical state of the ligament in vivo, where the constraints of attachment to rigid bone and the force of the joint pressure lead to nonzero strain even when the spine is not loaded. In this work, we quantified these two effects using cadaveric lumbar spines (five spines, 20 total facet joints harvested from L2 to L5). The effect of joint pressure was measured by injecting saline into the joint space and tracking the 3D capsule surface motion via digital image correlation, and the prestrain due to attachment was measured by dissecting a large section of the tissue from the bone and by tracking the motion between the on-bone and free states. We measured joint pressures of roughly 15-40 kPa and local first principal strains of up to 25-50% when 0.3 mL of saline was injected into the joint space; the subsequent increase in pressure and strain were more modest for further increases in injection volume, possibly due to leakage of fluid from the joint. The largest stretches were in the bone-to-bone direction in the portions of the ligament spanning the joint space. When the ligament was released from the vertebrae, it shrank by an average of 4-5%, with local maximum (negative) principal strain values of up to 30%, on average. Based on these measurements and previous tests on isolated lumbar facet capsular ligaments, we conclude that the normal in vivo state of the facet capsular ligament is in tension, and that the collagen in the ligament is likely uncrimped even when the spine is not loaded.


Subject(s)
Zygapophyseal Joint , Biomechanical Phenomena , Humans , Ligaments, Articular , Lumbar Vertebrae , Range of Motion, Articular
10.
Spine J ; 22(6): 1012-1015, 2022 06.
Article in English | MEDLINE | ID: mdl-35123049

ABSTRACT

BACKGROUND CONTEXT: Intraoperative stitched O-arm images are commonplace during spinal deformity correction surgeries; however, the accuracy of stitched images for measuring angular measures is unknown. PURPOSE: To examine the effect of radiographic parallax effect of stitched O-arm images by assessing the regional curve agreement with measurements from computed tomography (CT). STUDY DESIGN/SETTING: Experimental radiographic study. PATIENT SAMPLE: Four whole body cadavers (age: 81±14, sex: 2M/2F) and two fabricated spine model phantoms from surgical cases, one with extreme scoliosis and one normal spine, were utilized. OUTCOME MEASURES: The limits of agreement for angular measures between CT (gold-standard) and intraoperative stitched fluoroscopic images were calculated. Further, intra- and inter-rater reliability was measured. METHODS: A series of adjacent anterior-posterior and lateral images were acquired cranial to caudal using an O-arm in three table configurations (standard position, off-axis in the coronal plane, and reverse Trendelenburg) and stitched manually. Regional angular measures were extracted, and the limits of agreement were calculated between each table position and CT using a Bland-Altman approach. RESULTS: The observers displayed excellent inter-rater reliability across table positions (range: 0.944-0.989) and intra-rater reliability (0.979-0.995). The limits of agreement results showed a similar and better agreement was observed for the Standard and Reverse Trendelenburg than the Off-Axis position. CONCLUSIONS: This work shows reliable regional curvature measurements can be calculated with good agreement with CT in common table positions, but care should be taken to ensure the patient is perpendicular to the X-rays, particularly in the lateral view.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Aged , Aged, 80 and over , Humans , Reproducibility of Results , Spine/diagnostic imaging , Spine/surgery , Tomography, X-Ray Computed
11.
J Electromyogr Kinesiol ; 61: 102591, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34543984

ABSTRACT

Neck pain is a prevalent condition and clinical examination techniques are limited and unable to assess out-of-plane motion. Recent works investigating cervical kinematics during neck circumduction (NC), a dynamic 3D task, has shown the ability to discern those with and without neck pain. The purposes of this study were to establish 1) confidence and prediction intervals of head-to-torso kinematics during NC in a healthy cohort, 2) a baseline summative metric to quantify the duration and magnitude of deviations outside the prediction interval, and 3) the reliability of NC. Thirty-nine participants (25.6 ± 6.3 years, 19F/20M) without neck pain completed left and right NC. A two-way smoothing spline analysis of variance was utilized to determine the mean-fitted values and 90% confidence and prediction intervals for NC. A standardized effect size was calculated and aggregated across all axes (Delta RMSD aggregate), as a summative metric of motion quality. Confidence and prediction intervals were comparable for left and right NC and demonstrated excellent reliability. The average sum of the Delta RMSD aggregate was 2.76 ± 0.55 for left NC and 2.74 ± 0.63 for right NC. The results of this study demonstrate the feasibility of utilizing normative intervals of a NC task to assess head-to-torso kinematics.


Subject(s)
Cervical Vertebrae , Muscle, Skeletal , Biomechanical Phenomena , Humans , Range of Motion, Articular , Reproducibility of Results
12.
Sci Rep ; 11(1): 14181, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244551

ABSTRACT

Meniscal tears are a common orthopedic injury, yet their healing is difficult to assess post-operatively. This impedes clinical decisions as the healing status of the meniscus cannot be accurately determined non-invasively. Thus, the objectives of this study were to explore the utility of a goat model and to use quantitative magnetic resonance imaging (MRI) techniques, histology, and biomechanical testing to assess the healing status of surgically induced meniscal tears. Adiabatic T1ρ, T2, and T2* relaxation times were quantified for both operated and control menisci ex vivo. Histology was used to assign healing status, assess compositional elements, and associate healing status with compositional elements. Biomechanical testing determined the failure load of healing lesions. Adiabatic T1ρ, T2, and T2* were able to quantitatively identify different healing states. Histology showed evidence of diminished proteoglycans and increased vascularity in both healed and non-healed menisci with surgically induced tears. Biomechanical results revealed that increased healing (as assessed histologically and on MRI) was associated with greater failure load. Our findings indicate increased healing is associated with greater meniscal strength and decreased signal differences (relative to contralateral controls) on MRI. This indicates that quantitative MRI may be a viable method to assess meniscal tears post-operatively.


Subject(s)
Disease Models, Animal , Goats , Knee Injuries/pathology , Meniscus/pathology , Animals , Biomechanical Phenomena , Collagen/analysis , Goats/anatomy & histology , Humans , Knee Injuries/diagnostic imaging , Magnetic Resonance Imaging , Meniscus/diagnostic imaging , Pilot Projects , Proteoglycans/analysis , Wound Healing
13.
Biomech Model Mechanobiol ; 20(4): 1445-1457, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33788068

ABSTRACT

The human lumbar facet capsule, with the facet capsular ligament (FCL) that forms its primary constituent, is a common source of lower back pain. Prior studies on the FCL were limited to in-plane tissue behavior, but due to the presence of two distinct yet mechanically different regions, a novel out-of-plane study was conducted to further characterize the roles of the collagen and elastin regions. An experimental technique, called stretch-and-bend, was developed to study the tension-compression asymmetry of the FCL due to varying collagen fiber density throughout the thickness of the tissue. Each healthy excised cadaveric FCL sample was tested in four conditions depending on primary collagen fiber alignment and regional loading. Our results indicate that the FCL is stiffest when the collagen fibers (1) are aligned in the direction of loading, (2) are in tension, and (3) are stretched - 16% from its off-the-bone, undeformed state. An optimization routine was used to fit a four-parameter anisotropic, hyperplastic model to the experimental data. The average elastin modulus, E, and the average collagen fiber modulus, ξ, were 13.15 ± 3.59 kPa and 18.68 ± 13.71 MPa (95% CI), respectively.


Subject(s)
Collagen/chemistry , Elastin/chemistry , Ligaments, Articular/physiology , Lumbar Vertebrae/physiology , Zygapophyseal Joint/physiology , Anisotropy , Biomechanical Phenomena , Finite Element Analysis , Humans , Low Back Pain/physiopathology , Models, Biological , Range of Motion, Articular , Stress, Mechanical , Viscosity
14.
J Biomech ; 105: 109814, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32423548

ABSTRACT

The facet capsular ligaments (FCLs) flank the spinous process on the posterior aspect of the spine. The lumbar FCL is collagenous, with collagen fibers aligned primarily bone-to-bone (medial-lateral) and experiences significant shear, especially during spinal flexion and extension. We characterized the mechanical response of the lumbar FCL to in-plane shear, and we evaluated that response in the context of the fiber architecture. In-plane shear tests with both positive and negative shear (i.e., corresponding to flexion and to extension) were performed on eight cadaveric human L4-L5 FCLs. Our most striking observation was subject-dependent asymmetry in the response. All samples showed a toe region of low stiffness, transitioning to greater stiffness at higher strains, for both shear directions. Different samples showed profoundly different transition strains, with some samples stiffening more rapidly in positive shear and some in negative shear. This unpredictable asymmetry, which did not correlate with age, side, or degeneration state, suggesting that collagen fibers in the FCL are sometimes aligned at a slight positive angle from the bone-to-bone axis and sometimes at a negative angle. Fitting the experimental data to a fiber-composite-based finite element model supported this idea, yielding optimal fits with positive or negative off-axis fiber directions (-40° to +40°). Subsequent examination of selected FCLs by small-angle x-ray scattering (SAXS) showed a similar variability in fiber direction. We conclude that small individual differences in lumbar FCL architecture may have a significant effect on lumbar FCL mechanics, especially at moderate strains.


Subject(s)
Lumbar Vertebrae , Biomechanical Phenomena , Cadaver , Finite Element Analysis , Humans , Range of Motion, Articular , Scattering, Small Angle , X-Ray Diffraction
15.
Spine Deform ; 8(5): 845-851, 2020 10.
Article in English | MEDLINE | ID: mdl-32449035

ABSTRACT

STUDY DESIGN: Ex vivo porcine imaging study. OBJECTIVES: Quantitatively evaluate change in MRI signal at the discs caudal to spinal fusion instrumentation. Individuals who receive posterior spinal instrumentation are at risk of developing accelerated disc degeneration at adjacent levels. Degeneration is associated with a loss of biochemical composition and mechanical integrity of the disc, which can be noninvasively assessed through quantitative T2* (qT2*) MRI techniques. However, qT2* is sensitive to magnetic susceptibility introduced by metal. METHODS: Nine ex vivo porcine lumbar specimens were imaged with 3 T MRI. Fast spin-echo T2-weighted (T2w) images and gradient-echo qT2* maps were acquired, both without and with posterior spinal fusion instrumentation. Average T2* relaxation times of the nuclei pulposi (NP) were measured at the adjacent and sub-adjacent discs and measurements were compared using t tests before and after instrumentation. The size of the signal void and metal artifact were determined (modified ASTM F2119-07) within the vertebral body and spinal cord for both MRI sequences. The relationship between T2* signal loss and distance from the instrumentation was evaluated using Pearson's correlation. RESULTS: There was no significant difference between adjacent and sub-adjacent NP T2* relaxation time prior to instrumentation (p = 0.86). Following instrumentation, there was a significant decrease in the T2* relaxation time at the adjacent NP (average = 20%, p = 0.02), and no significant difference at the sub-adjacent NP (average = - 3%, p = 0.30). Furthermore, there was a significant negative correlation between signal loss and distance to disc (r = - 0.61, p < 0.01). CONCLUSIONS: Spinal fusion instrumentation interferes with T2* relaxation time measurements at the adjacent disc but not at the sub-adjacent discs. However, there is sufficient signal at the adjacent disc to quantify changes in the T2* relaxation time following spinal fusion. Hence, baseline MRI scan following spinal fusion surgery are required to interpret and track changes in disc health at the caudal discs. LEVEL OF EVIDENCE: N/A.


Subject(s)
Diffusion Magnetic Resonance Imaging , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/etiology , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Spinal Fusion/adverse effects , Spinal Fusion/instrumentation , Animals , Artifacts , Intervertebral Disc Degeneration/pathology , Postoperative Complications/pathology , Spinal Fusion/methods , Swine
16.
PLoS One ; 15(2): e0228594, 2020.
Article in English | MEDLINE | ID: mdl-32059007

ABSTRACT

Biplane radiography and associated shape-matching provides non-invasive, dynamic, 3D osteo- and arthrokinematic analysis. Due to the complexity of data acquisition, each system should be validated for the anatomy of interest. The purpose of this study was to assess our system's acquisition methods and validate a custom, automated 2D/3D shape-matching algorithm relative to radiostereometric analysis (RSA) for the cervical and lumbar spine. Additionally, two sources of RSA error were examined via a Monte Carlo simulation: 1) static bead centroid identification and 2) dynamic bead tracking error. Tantalum beads were implanted into a cadaver for RSA and cervical and lumbar spine flexion and lateral bending were passively simulated. A bead centroid identification reliability analysis was performed and a vertebral validation block was used to determine bead tracking accuracy. Our system's overall root mean square error (RMSE) for the cervical spine ranged between 0.21-0.49mm and 0.42-1.80° and the lumbar spine ranged between 0.35-1.17mm and 0.49-1.06°. The RMSE associated with RSA ranged between 0.14-0.69mm and 0.96-2.33° for bead centroid identification and 0.25-1.19mm and 1.69-4.06° for dynamic bead tracking. The results of this study demonstrate our system's ability to accurately quantify segmental spine motion. Additionally, RSA errors should be considered when interpreting biplane validation results.


Subject(s)
Algorithms , Radiography/methods , Spine/diagnostic imaging , Biomechanical Phenomena , Humans , Male , Middle Aged , Motion , Radiography/instrumentation , Radiography/standards , Reproducibility of Results
17.
Spine (Phila Pa 1976) ; 44(18): 1270-1278, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30994599

ABSTRACT

STUDY DESIGN: Experimental and computational study of posterior spinal instrumentation and growing rod constructs per ASTM F1717-15 vertebrectomy methodology for static compressive bending. OBJECTIVE: Assess mechanical performance of standard fusion instrumentation and growing rod constructs. SUMMARY OF BACKGROUND DATA: Growing rod instrumentation utilizes fewer anchors and spans longer distances, increasing shared implant loads relative to fusion. There is a need to evaluate growing rod's mechanical performance. ASTM F1717-15 standard assesses performance of spinal instrumentation; however, effects of growing rods with side-by-side connectors have not been evaluated. METHODS: Standard and growing rod constructs were tested per ASTM F1717-15 methodology; setup was modified for growing rod constructs to allow for connector offset. Three experimental groups (standard with active length 76 mm, and growing rods with active lengths 76 and 376 mm; n = 5/group) were tested; stiffness, yield load, and load at maximum displacement were calculated. Computational models were developed and used to locate stress concentrations. RESULTS: For both constructs at 76 mm active length, growing rod stiffness (49 ±â€Š0.8 N/mm) was significantly greater than standard (43 ±â€Š0.4 N/mm); both were greater than growing rods at 376 mm (10 ±â€Š0.3 N/mm). No significant difference in yield load was observed between growing rods (522 ±â€Š12 N) and standard (457 ±â€Š19 N) constructs of 76 mm. Growing rod constructs significantly decreased from 76 mm (522 ±â€Š12 N) to 376 mm active length (200 ±â€Š2 N). Maximum load of growing rods at 76 mm (1084 ±â€Š11 N) was significantly greater than standard at 76 mm (1007 ±â€Š7 N) and growing rods at 376 mm active length (392 ±â€Š5 N). Simulations with active length of 76 mm were within 10% of experimental mechanical characteristics; stress concentrations were at the apex and cranial to connector-rod interaction for standard and growing rod models, respectively. CONCLUSION: Growing rod constructs are stronger and stiffer than spinal instrumentation constructs; with an increased length accompanied a decrease in strength. Growing rod construct stress concentration locations observed during computational simulation are consistent with clinically observed failure locations. LEVEL OF EVIDENCE: 5.


Subject(s)
Fracture Fixation, Internal/instrumentation , Prostheses and Implants , Spinal Fusion/instrumentation , Biomechanical Phenomena , Humans , Stress, Mechanical
18.
J Biomech ; 82: 375-380, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30385001

ABSTRACT

Biplane 2D-3D registration approaches have been used for measuring 3D, in vivo glenohumeral (GH) joint kinematics. Computed tomography (CT) has become the gold standard for reconstructing 3D bone models, as it provides high geometric accuracy and similar tissue contrast to video-radiography. Alternatively, magnetic resonance imaging (MRI) would not expose subjects to radiation and provides the ability to add cartilage and other soft tissues to the models. However, the accuracy of MRI-based 2D-3D registration for quantifying glenohumeral kinematics is unknown. We developed an automatic 2D-3D registration program that works with both CT- and MRI-based image volumes for quantifying joint motions. The purpose of this study was to use the proposed 2D-3D auto-registration algorithm to describe the humerus and scapula tracking accuracy of CT- and MRI-based registration relative to radiostereometric analysis (RSA) during dynamic biplanar video-radiography. The GH kinematic accuracy (RMS error) was 0.6-1.0 mm and 0.6-2.2° for the CT-based registration and 1.4-2.2 mm and 1.2-2.6° for MRI-based registration. Higher kinematic accuracy of CT-based registration was expected as MRI provides lower spatial resolution and bone contrast as compared to CT and suffers from spatial distortions. However, the MRI-based registration is within an acceptable accuracy for many clinical research questions.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Shoulder/diagnostic imaging , Shoulder/physiology , Tomography, X-Ray Computed , Algorithms , Biomechanical Phenomena , Female , Humans , Male , Middle Aged
19.
J R Soc Interface ; 15(148)2018 11 14.
Article in English | MEDLINE | ID: mdl-30429262

ABSTRACT

Due to its high level of innervation, the lumbar facet capsular ligament (FCL) is suspected to play a role in low back pain (LBP). The nociceptors in the lumbar FCL may experience excessive deformation and generate pain signals. As such, understanding the mechanical behaviour of the FCL, as well as that of its underlying nerves, is critical if one hopes to understand its role in LBP. In this work, we constructed a multiscale structure-based finite-element (FE) model of a lumbar FCL on a spinal motion segment undergoing physiological motions of flexion, extension, ipsilateral and contralateral bending, and ipsilateral axial rotation. Our FE model was created for a generic FCL geometry by morphing a previously imaged FCL anatomy onto an existing generic motion segment model. The fibre organization of the FCL in our models was subject-specific based on previous analysis of six dissected specimens. The fibre structures from those specimens were mapped onto the FCL geometry on the motion segment. A motion segment model was used to determine vertebral kinematics under specified spinal loading conditions, providing boundary conditions for the FCL-only multiscale FE model. The solution of the FE model then provided detailed stress and strain fields within the tissue. Lastly, we used this computed strain field and our previous studies of deformation of nerves embedded in fibrous networks during simple deformations (e.g. uniaxial stretch, shear) to estimate the nerve deformation based on the local tissue strain and fibre alignment. Our results show that extension and ipsilateral bending result in largest strains of the lumbar FCL, while contralateral bending and flexion experience lowest strain values. Similar to strain trends, we calculated that the stretch of the microtubules of the nerves, as well as the forces exerted on the nerves' membrane are maximal for extension and ipsilateral bending, but the location within the FCL of peak microtubule stretch differed from that of peak membrane force.


Subject(s)
Ligaments, Articular/physiology , Lumbar Vertebrae/physiology , Models, Biological , Movement/physiology , Neurons/physiology , Rotation , Biomechanical Phenomena , Humans , Ligaments, Articular/anatomy & histology , Lumbar Vertebrae/anatomy & histology , Neurons/cytology
20.
Med Eng Phys ; 52: 69-75, 2018 02.
Article in English | MEDLINE | ID: mdl-29229406

ABSTRACT

Fluoroscopy and 2D/3D shape-matching has emerged as the standard for non-invasively quantifying kinematics. However, its accuracy has not been well established for the shoulder complex when using single-plane fluoroscopy. The purpose of this study was to determine the accuracy of single-plane fluoroscopy and 2D/3D shape-matching for quantifying full shoulder complex kinematics. Tantalum markers were implanted into the clavicle, humerus, and scapula of four cadaveric shoulders. Biplane radiographs were obtained with the shoulder in five humerothoracic elevation positions (arm at the side, 30°, 60°, 90°, maximum). Images from both systems were used to perform marker tracking, while only those images acquired with the primary fluoroscopy system were used to perform 2D/3D shape-matching. Kinematics errors due to shape-matching were calculated as the difference between marker tracking and 2D/3D shape-matching and expressed as root mean square (RMS) error, bias, and precision. Overall RMS errors for the glenohumeral joint ranged from 0.7 to 3.3° and 1.2 to 4.2 mm, while errors for the acromioclavicular joint ranged from 1.7 to 3.4°. Errors associated with shape-matching individual bones ranged from 1.2 to 3.2° for the humerus, 0.5 to 1.6° for the scapula, and 0.4 to 3.7° for the clavicle. The results of the study demonstrate that single-plane fluoroscopy and 2D/3D shape-matching can accurately quantify full shoulder complex kinematics in static positions.


Subject(s)
Fluoroscopy/methods , Mechanical Phenomena , Shoulder/diagnostic imaging , Biomechanical Phenomena , Fiducial Markers , Fluoroscopy/standards , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...