Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Genet Couns ; 33(1): 168-178, 2024 02.
Article in English | MEDLINE | ID: mdl-38197720

ABSTRACT

Over the past several decades, molecular genetic testing volumes have grown and testing has expanded from single-gene assays to multigene panels, exome sequencing, and genome sequencing. The number of molecular genetic variants that require manual interpretation has grown simultaneously, resulting in an increased demand for education on molecular variant evaluation (MVE). To meet this growing need, a team of genetic counselors and educational experts undertook a quality improvement (QI) initiative with the objectives of assessing, standardizing, and scaling access to MVE education, without increasing instructor time to deliver the education. Using the Six Sigma define-measure-analyze-improve-control (DMAIC) framework, a flipped learning course with a series of standardized online modules was developed to deliver MVE education in an enduring and accessible format for a diverse group of learners. Outcome measures included the number of online modules developed, the number of individual learners and unique learner groups accessing MVE education, and direct instruction time required to deliver MVE education. Countermeasures to ensure maintenance of educational quality included post-course learner satisfaction scores and performance on competency assessments. Both the total number of learners and the number of unique learner groups accessing MVE education increased, while instructor time required to deliver content per learner decreased. Learner satisfaction scores remained constant and performance on competency assessments improved. The QI initiative successfully scaled MVE education to a diverse group of learners without decreasing learner outcomes or satisfaction. The flipped learning format provides a scalable and flexible educational model for instructors and learners in a rapidly changing environment that often includes remote work and education.


Subject(s)
Counselors , Quality Improvement , Humans , Educational Status , Learning
3.
Hum Genet ; 140(12): 1775-1789, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34642815

ABSTRACT

Missense variants located in the N-terminal region of WDR37 were recently identified to cause a multisystemic syndrome affecting neurological, ocular, gastrointestinal, genitourinary, and cardiac development. WDR37 encodes a WD40 repeat-containing protein of unknown function. We identified three novel WDR37 variants, two likely pathogenic de novo alleles and one inherited variant of uncertain significance, in individuals with phenotypes overlapping those previously reported but clustering in a different region of the protein. The novel alleles are C-terminal to the prior variants and located either within the second WD40 motif (c.659A>G p.(Asp220Gly)) or in a disordered protein region connecting the second and third WD40 motifs (c.778G>A p.(Asp260Asn) and c.770C>A p.(Pro257His)). The three novel mutants showed normal cellular localization but lower expression levels in comparison to wild-type WDR37. To investigate the normal interactions of WDR37, we performed co-immunoprecipitation and yeast two-hybrid assays. This revealed the ability of WDR37 to form homodimers and to strongly bind PACS1 and PACS2 phosphofurin acidic cluster sorting proteins; immunocytochemistry confirmed colocalization of WDR37 with PACS1 and PACS2 in human cells. Next, we analyzed previously reported and novel mutants for their ability to dimerize with wild-type WDR37 and bind PACS proteins. Interaction with wild-type WDR37 was not affected for any variant; however, one novel mutant, p.(Asp220Gly), lost its ability to bind PACS1 and PACS2. In summary, this study presents a novel region of WDR37 involved in human disease, identifies PACS1 and PACS2 as major binding partners of WDR37 and provides insight into the functional effects of various WDR37 variants.


Subject(s)
Abnormalities, Multiple/genetics , Mutant Proteins/genetics , Nuclear Proteins/genetics , Abnormalities, Multiple/metabolism , Adolescent , Animals , Cells, Cultured , Child , Child, Preschool , Cognitive Dysfunction/genetics , Female , Humans , Male , Mutant Proteins/metabolism , Nuclear Proteins/metabolism , Pedigree , Protein Binding , Syndrome , Two-Hybrid System Techniques , Vesicular Transport Proteins/metabolism
4.
Epilepsia ; 62(7): e103-e109, 2021 07.
Article in English | MEDLINE | ID: mdl-34041744

ABSTRACT

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Subject(s)
Developmental Disabilities/genetics , Epilepsy, Generalized/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Developmental Disabilities/physiopathology , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/etiology , Epilepsies, Myoclonic/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/etiology , Exome/genetics , Female , Genetic Variation , Humans , Infant , Intellectual Disability/etiology , Intellectual Disability/genetics , Male , Mutation/genetics , Phenotype , Status Epilepticus/diagnosis , Status Epilepticus/etiology , Status Epilepticus/genetics , Young Adult
5.
Genet Med ; 23(3): 498-507, 2021 03.
Article in English | MEDLINE | ID: mdl-33144682

ABSTRACT

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Subject(s)
Exome , Undiagnosed Diseases , Exome/genetics , Genetic Testing , Humans , Phenotype , Translational Research, Biomedical , Exome Sequencing
6.
Genet Med ; 21(12): 2723-2733, 2019 12.
Article in English | MEDLINE | ID: mdl-31239556

ABSTRACT

PURPOSE: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). METHODS: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. RESULTS: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. CONCLUSION: We significantly broaden the mutational and clinical spectrum ofCTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.


Subject(s)
CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Neurodevelopmental Disorders/genetics , Animals , Child , Chromatin/genetics , Chromatin/metabolism , Developmental Disabilities/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Humans , Intellectual Disability/genetics , Male , Mutation/genetics , Mutation, Missense/genetics , Neurodevelopmental Disorders/metabolism , Transcription Factors/genetics , Exome Sequencing/methods , Young Adult
7.
Mol Genet Genomic Med ; 7(3): e00560, 2019 03.
Article in English | MEDLINE | ID: mdl-30632316

ABSTRACT

BACKGROUND: We describe a patient presenting with pachygyria, epilepsy, developmental delay, short stature, failure to thrive, facial dysmorphisms, and multiple osteochondromas. METHODS: The patient underwent extensive genetic testing and analysis in an attempt to diagnose the cause of his condition. Clinical testing included metaphase karyotyping, array comparative genomic hybridization, direct sequencing and multiplex ligation-dependent probe amplification and trio-based exome sequencing. Subsequently, research-based whole transcriptome sequencing was conducted to determine whether it might shed light on the undiagnosed phenotype. RESULTS: Clinical exome sequencing of patient and parent samples revealed a maternally inherited splice-site variant in the doublecortin (DCX) gene that was classified as likely pathogenic and diagnostic of the patient's neurological phenotype. Clinical array comparative genome hybridization analysis revealed a 16p13.3 deletion that could not be linked to the patient phenotype based on affected genes. Further clinical testing to determine the cause of the patient's multiple osteochondromas was unrevealing despite extensive profiling of the most likely causative genes, EXT1 and EXT2, including mutation screening by direct sequence analysis and multiplex ligation-dependent probe amplification. Whole transcriptome sequencing identified a SAMD12-EXT1 fusion transcript that could have resulted from a chromosomal deletion, leading to the loss of EXT1 function. Re-review of the clinical array comparative genomic hybridization results indicated a possible unreported mosaic deletion affecting the SAMD12 and EXT1 genes that corresponded precisely to the introns predicted to be affected by a fusion-causing deletion. The existence of the mosaic deletion was subsequently confirmed clinically by an increased density copy number array and orthogonal methodologies CONCLUSIONS: While mosaic mutations and deletions of EXT1 and EXT2 have been reported in the context of multiple osteochondromas, to our knowledge, this is the first time that transcriptomics technologies have been used to diagnose a patient via fusion transcript analysis in the congenital disease setting.


Subject(s)
Exostoses, Multiple Hereditary/genetics , Gene Fusion , N-Acetylglucosaminyltransferases/genetics , Nerve Tissue Proteins/genetics , Child , Exostoses, Multiple Hereditary/pathology , Gene Deletion , Humans , Male , RNA, Messenger/genetics , Sterile Alpha Motif/genetics
8.
J Natl Cancer Inst ; 109(7)2017 07 01.
Article in English | MEDLINE | ID: mdl-28376176

ABSTRACT

Background: Breast cancer patients with residual disease after neoadjuvant chemotherapy (NAC) have increased recurrence risk. Molecular characterization, knowledge of NAC response, and simultaneous generation of patient-derived xenografts (PDXs) may accelerate drug development. However, the feasibility of this approach is unknown. Methods: We conducted a prospective study of 140 breast cancer patients treated with NAC and performed tumor and germline sequencing and generated patient-derived xenografts (PDXs) using core needle biopsies. Chemotherapy response was assessed at surgery. Results: Recurrent "targetable" alterations were not enriched in patients without pathologic complete response (pCR); however, upregulation of steroid receptor signaling and lower pCR rates (16.7%, 1/6) were observed in triple-negative breast cancer (TNBC) patients with luminal androgen receptor (LAR) vs basal subtypes (60.0%, 21/35). Within TNBC, TP53 mutation frequency (75.6%, 31/41) did not differ comparing basal (74.3%, 26/35) and LAR (83.3%, 5/6); however, TP53 stop-gain mutations were more common in basal (22.9%, 8/35) vs LAR (0.0%, 0/6), which was confirmed in The Cancer Genome Atlas and British Columbia data sets. In luminal B tumors, Ki-67 responses were observed in tumors that harbored mutations conferring endocrine resistance ( p53, AKT, and IKBKE ). PDX take rate (27.4%, 31/113) varied according to tumor subtype, and in a patient with progression on NAC, sequencing data informed drug selection (olaparib) with in vivo antitumor activity observed in the primary and resistant (postchemotherapy) PDXs. Conclusions: In this study, we demonstrate the feasibility of tumor sequencing and PDX generation in the NAC setting. "Targetable" alterations were not enriched in chemotherapy-resistant tumors; however, prioritization of drug testing based on sequence data may accelerate drug development.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Adult , Aged , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chemotherapy, Adjuvant , Exome/genetics , Female , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Middle Aged , Mutation , Neoadjuvant Therapy , Prospective Studies , Sequence Analysis, DNA/methods , Treatment Outcome , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics
9.
BMJ Open ; 6(4): e010332, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27084275

ABSTRACT

OBJECTIVES: To determine the frequency of pathogenic inherited mutations in 157 select genes from patients with metastatic castrate-resistant prostate cancer (mCRPC). DESIGN: Observational. SETTING: Multisite US-based cohort. PARTICIPANTS: Seventy-one adult male patients with histological confirmation of prostate cancer, and had progressive disease while on androgen deprivation therapy. RESULTS: Twelve patients (17.4%) showed evidence of carrying pathogenic or likely pathogenic germline variants in the ATM, ATR, BRCA2, FANCL, MSR1, MUTYH, RB1, TSHR and WRN genes. All but one patient opted in to receive clinically actionable results at the time of study initiation. We also found that pathogenic germline BRCA2 variants appear to be enriched in mCRPC compared to familial prostate cancers. CONCLUSIONS: Pathogenic variants in cancer-susceptibility genes are frequently observed in patients with mCRPC. A substantial proportion of patients with mCRPC or their family members would derive clinical utility from mutation screening. TRIAL REGISTRATION NUMBER: NCT01953640; Results.


Subject(s)
Exome , Genetic Predisposition to Disease , Germ-Line Mutation , Neoplasm Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Adult , Aged , BRCA2 Protein/genetics , Gene Frequency , Humans , Male , Middle Aged , Prostatic Neoplasms, Castration-Resistant/pathology
10.
Breast Cancer Res Treat ; 153(2): 435-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26296701

ABSTRACT

When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exome , Genetic Predisposition to Disease , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Databases, Genetic , Female , Gene Frequency , Genes, BRCA1 , Genes, BRCA2 , Genes, p53 , Humans , Middle Aged , Neoadjuvant Therapy , Neoplasm Invasiveness , Neoplasm Staging , Young Adult
11.
Genet Med ; 16(8): 588-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24525918

ABSTRACT

Heterozygous loss-of-function SMAD4 mutations are associated with juvenile polyposis syndrome and hereditary hemorrhagic telangiectasia. Some carriers exhibit symptoms of both conditions, leading to juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome. Three families have been reported with connective tissue abnormalities. To better understand the spectrum and extent of clinical findings in SMAD4 carriers, medical records of 34 patients (20 families) from five clinical practices were reviewed. Twenty-one percent of the patients (7/34) had features suggesting a connective tissue defect: enlarged aortic root (n = 3), aortic and mitral insufficiency (n = 2), aortic dissection (n = 1), retinal detachment (n = 1), brain aneurysms (n = 1), and lax skin and joints (n = 1). Juvenile polyposis-specific findings were almost uniformly present but variable. Ninety-seven percent of the patients had colon polyps that were generally pan-colonic and of variable histology and number. Forty-eight percent of the patients (15/31) had extensive gastric polyposis. Hereditary hemorrhagic telangiectasia features, including epistaxis (19/31, 61%), mucocutaneous telangiectases (15/31, 48%), liver arteriovenous malformation (6/16, 38%), brain arteriovenous malformation (1/26, 4%), pulmonary arteriovenous malformation (9/17, 53%), and intrapulmonary shunting (14/23, 61%), were documented in 76% of the patients. SMAD4 carriers should be managed for juvenile polyposis and hereditary hemorrhagic telangiectasia because symptoms of both conditions are likely yet unpredictable. Connective tissue abnormalities are an emerging component of juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome, and larger studies are needed to understand these manifestations.


Subject(s)
Connective Tissue/pathology , Intestinal Polyposis/congenital , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Intestinal Polyposis/genetics , Intestinal Polyposis/pathology , Middle Aged , Mutation , Retrospective Studies , Signal Transduction , Transforming Growth Factor beta/genetics , Young Adult
12.
Mayo Clin Proc ; 89(1): 25-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24388019

ABSTRACT

OBJECTIVE: To report the design and implementation of the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment protocol that was developed to test the concept that prescribers can deliver genome-guided therapy at the point of care by using preemptive pharmacogenomics (PGx) data and clinical decision support (CDS) integrated into the electronic medical record (EMR). PATIENTS AND METHODS: We used a multivariate prediction model to identify patients with a high risk of initiating statin therapy within 3 years. The model was used to target a study cohort most likely to benefit from preemptive PGx testing among the Mayo Clinic Biobank participants, with a recruitment goal of 1000 patients. We used a Cox proportional hazards model with variables selected through the Lasso shrinkage method. An operational CDS model was adapted to implement PGx rules within the EMR. RESULTS: The prediction model included age, sex, race, and 6 chronic diseases categorized by the Clinical Classifications Software for International Classification of Diseases, Ninth Revision codes (dyslipidemia, diabetes, peripheral atherosclerosis, disease of the blood-forming organs, coronary atherosclerosis and other heart diseases, and hypertension). Of the 2000 Biobank participants invited, 1013 (51%) provided blood samples, 256 (13%) declined participation, 555 (28%) did not respond, and 176 (9%) consented but did not provide a blood sample within the recruitment window (October 4, 2012, through March 20, 2013). Preemptive PGx testing included CYP2D6 genotyping and targeted sequencing of 84 PGx genes. Synchronous real-time CDS was integrated into the EMR and flagged potential patient-specific drug-gene interactions and provided therapeutic guidance. CONCLUSION: This translational project provides an opportunity to begin to evaluate the impact of preemptive sequencing and EMR-driven genome-guided therapy. These interventions will improve understanding and implementation of genomic data in clinical practice.


Subject(s)
Genetic Testing/standards , Pharmacogenetics/methods , Practice Guidelines as Topic , Precision Medicine/methods , Atherosclerosis/drug therapy , Cohort Studies , Decision Making , Diabetes Mellitus/drug therapy , Dyslipidemias/drug therapy , Electronic Health Records , Female , Genotyping Techniques , Hematopoiesis/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypertension/drug therapy , Male , Middle Aged , Pharmacogenetics/standards , Pilot Projects , Precision Medicine/standards , Predictive Value of Tests , United States
SELECTION OF CITATIONS
SEARCH DETAIL